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Abstract: Optimal synthesis of mechanisms is a repeated analysis for a random determined 
mechanism and finding of the best possible one so that it could meet technological requirements, and 
it is most often used in dimensional synthesis, which implies determination of elements of the given 
mechanism (lengths, angles, coordinates) necessary for creation of the mechanism in the direction of 
desired motion. Dimensional synthesis using analytical techniques has been found to be very useful in 
mechanism design. A good implementation of this method is in obtaining an initial guess or starting 
point for optimal synthesis procedures especially in path generation problems. This paper represents 
the synthesis of a four-bar mechanism, representing the scheme of a harbour crane, as a coupler point 
to describe a straight, horizontal line.      
 
Keywords: harbour crane, optimal sysntesis; Pattern Search algorithm. 
 
INTRODUCTION 
 
There are two common requirements in kinematic synthesis of mechanisms: path generation and 
motion generation. In dimensional synthesis there are two approaches: synthesis of precision points 
and approximate or optimal synthesis. Precision point synthesis implies that the point on the coupler 
plane passes through a certain number of desired (exact) points, but without the possibility of 
controlling a structural error on a path out of those points. Precision point synthesis is restricted by the 
number of points which must be equal to the number of independent parameters defined by the 
mechanism [1]. The maximum number of points for a four-bar linkage is nine. If the number of 
equations generated by the number of exact points is smaller than the number of projected variables, 
then there is a selection of free variables, so that the problem of synthesis does not have a single-
valued solution [2]. When the number of precision points increases, the problem of precision point 
synthesis becomes very nonlinear and extremely difficult for solving, and the mechanism obtained by 
this type of synthesis is in most cases useless: because dimensions of the mechanism members are in 
disproportion, or the obtained solutions are in the form of complex numbers so there is no mechanism. 
The maximum number of precision points on the path of the coupler in a four-bar-linkage is nine in 
uncoordinated motion [3]. 
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Figure 1. Four-bar linkage of harbour crane  
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Kinematic synthesis, in general, implies the development of methods of computational or graphical 
construction, that implicitly determine the proper dimensions for the synthesized mechanism. 
Typically, a design process is a sequence of decisions, each of which must be evaluated and altered as 
necessary. The design engineer brings to this process his experience from past successful designs. The 
ultimate goal of the design process is the discovery of the optimum solution for a given design 
situation. With the development of powerful numerical analysis tools, it is becoming increasingly clear 
that the traditional graphical techniques can be supplemented and sometimes completely replaced by 
computational methods [4]. 
A harbour crane as depicted in fig. 1 will be considered. It will be assumed that the four-bar 
linkage is given and that the point C of the coupler plane must be searched that generates the 
(approximated) horizontal line. 
 
EQUATIONS OF MOTION 
 
The coordinates of joint A are expressed in terms of the coordinates of joint 1O  and the relative 
orientation of link 1. Its coordinates are determined using following equations   

111 coslxx OA                                                              (1) 

111 sinlyy OA                                                              (2) 
For the joint B on the links 2 and 3 can be writing 

33222 coscos  lxlxx OAB                                              (3) 

33222 sinsin  lxlyy OAB                                              (4) 
where 2  and 3  are  the relative orientations of links 2 and 3 with respect to axis ox  of the Cartesian 
reference frame Oxy.  
By eliminating 3 combining equation (3) with (4) and summarizing we have 
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2
222 sincos llyylxx OAOA                               (5) 

or 
0sincos 22  CBA                                                     (6) 

Where 
 222 OA xxlA                                                                (7) 
 222 OA yylB                                                                (8) 

    2
3

2
2

2
2

2
2 llyyxxC OAOA                                             (9) 

With notation  

2
tan 2T                                                                 (10) 

equation (6) can be writing as 
  022  ACBTTAC                                                  (11) 

and is obtained  
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                                                    (12) 

respective 
Tarctan22                                                                  (13) 

   24                                                               (14) 
Similarly, for link 4 and coupler point C can write relations  

44 coslxx BC                                                              (15) 

44 sinlyy BC                                                              (16) 
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DETERMINATION OF THE OPTIMAL CONFIGURATION 
 
To find the optimal configuration of the linkage mechanism has been used Matlab program with 
optimization Pattern Search algorithm [5], [6], [7].  
The Pattern Search algorithm uses the Augmented Lagrangian Pattern Search (ALPS) algorithm to 
solve nonlinear constraint problems. The optimization problem solved by the ALPS algorithm is  

 xf
x

min                                                                     (17) 

such that 
  0xci , mi ...1                                                             (18) 
  0xceqi ; tmmi ...1                                                       (19) 

bxA                                                                       (20) 
beqxAeq                                                                  (21) 
ubxlb                                                                    (22) 

where c(x) represents the nonlinear inequality constraints, ceq(x) represents the equality constraints, m 
is the number of nonlinear inequality constraints, and mt is the total number of nonlinear constraints. 
The ALPS algorithm attempts to solve a nonlinear optimization problem with nonlinear constraints, 
linear constraints, and bounds. In this approach, bounds and linear constraints are handled separately 
from nonlinear constraints. A subproblem is formulated by combining the objective function and 
nonlinear constraint function using the Lagrangian and the penalty parameters. A sequence of such 
optimization problems are approximately minimized using a pattern search algorithm such that the 
linear constraints and bounds are satisfied. Each subproblem solution represents one iteration. The 
number of function evaluations per iteration is therefore much higher when using nonlinear constraints 
than otherwise [8]. 
The pattern search minimizes a sequence of subproblems, each of which is an approximation of the 
original problem. Each subproblem has a fixed value of λ, s, and ρ. When the subproblem is 
minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are 
updated. Otherwise, the penalty parameter is increased by a penalty factor. This results in a new 
subproblem formulation and minimization problem [9]. These steps are repeated until the stopping 
criteria are met. Each subproblem solution represents one iteration. The number of function 
evaluations per iteration is therefore much higher when using nonlinear constraints than otherwise 
[10]. The imposed (desired) trajectory of coupler-point C is indicated in Table 1.  
 

Table 1. Imposed (desired) trajectory of coupler-point. 
 0

1  45 55 65 75 85 95 105 115 125 135 

][mx dezC  6.7 7.03 7.36 7.69 8.02 8.35 8.68 9.01 9.34 9.67 
 my dezC  1 1 1 1 1 1 1 1 1 1 

 
The linear and nonlinear inequality constrains can be write as form  

    321
2
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2

12 lllyyxx OOOO                                              (17) 

    0231
2
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2

12  lllyyxx OOOO                                         (18) 
1010 1  Ox                                                                 (19) 
1010 2  Ox                                                                (20) 
1010 2  Oy                                                                (21) 

110  il ; 4...1i                                                             (22) 
 20                                                                     (23) 

The objective function can be write as form 
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where 0
max1

0
min1 135;45    . 

The vector x of unknown parameters is of the form 
 ,,,,,,, 4321221 llllyxxx OOO ;                                                   (25) 

and its initial value is 
 6/,5,3,3,1,0,4,00 pix                                                          (26) 

Based on the above by Optimization Tool of Matlab and Pattern Search solver are obtained the 
following results indicated in Table 2 and Figure 2 and Figure 3. 
 

Table 2. Results / Matlab Optmization Tool. 

 
                                                                         

 
 
 
 
 

       
 
 

 
 
 

Figure 2. Pattern Search optimization diagrams. 

Figure 3. Desired versus optimized Coupler point diagrams. 
a) b) 
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CONCLUSION 
 
As can be seen in the figure above, between required and obtained values by optimization procedure is 
a very good coincidence. The approximation error, that is the minimum value of the objective 
function, is 189632.0 . Accordance with the procedure described above can be solved with success 
many of the practical problems of synthesis of planar mechanisms. Can be taken into consideration a 
multitude of solutions in a short time and optimum solutions results have a high degree of accuracy. 
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