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Abstract: Determination of reliability based on data obtained during the warranty period of a product 
requires the application of specific models used for truncated tests. For modeling the reliability, there 
are used specifically designed computing programs, two situations being possible: complete tests and 
incomplete tests. however, it is found that in the cases of incomplete tests it is not made distinguish 
between the censored type testing (which ends when a preset number of products of considered batch 
failed) and the truncated type testing (which ends at a predetermined time moment). in the case of the 
incomplete type testing, there is not taken into consideration the time interval between the moment of 
the last failure and the moment of the end of the experiment (the case of truncated type testing). 
Therefore, based on the realized study, there is proposed a computing algorithm for modeling the 
reliability through the usual mathematical laws (uniform, Weibull, exponential, normal) when trying 
truncated type. The results obtained confirm the usefulness of theoretical and practical computational 
algorithms proposed. 
For others mathematical models used in truncated tests, must be made a proper calculus algorithm.  
 
Keywords: reliability modeling, computing program, censored tests, truncated tests, uniform law, 
exponential law, normal law, Weibull law. 
 
PROBLEM FORMULATION 

 
Determination of reliability based on data obtained during the warranty period of a product requires 
the application of specific models used for truncated tests. For modeling the reliability, there are used 
specifically designed computing programs [14]. These computer programs make possible the 
determination of the reliability indicators for the various mathematical models: uniform law, Exp-1P 
(single-parametric exponential model), Exp-2P (two-parametric exponential model), Normal, 
Lognormal, Weibull-2P (two-parametric model), Weibull-3P (three-parameteric model), Gamma, G-
Gamma (Gamma geenralized), Logistic, Loglogistic, Gumbel. 
But working with these computing programs, it was found, however, that these have some 
limitations in distinguishing between different types of tests. Thus, next there are presented the 
following research. 
For this purpose, will be processed the failure times for 10 homogen products in the framework of a 
complete test (the test stops after the failure of all components) – presented in Table 1. 
 

Table 1. The values for failure times. 
 

No. Failure time [hours] 
1 102 
2 110 
3 124 
4 140 
5 152 
6 168 
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No. Failure time [hours] 
7 180 
8 186 
9 206 

10 220 
 
The computing program analyses the available mathematical models, depends on the correlation rank 
for the statistical distribution (the number of failed elements is F = 10, and the number of the 
supervised elements that were not damaged is S = 0, considered suspended dates), presented in 
hierarchical order (figure 1). Note that the most likely model is the Weibull 3-P model ( = 2,3745;  = 
110,0961 ore;  = 62,2000 ore), with a correlation rank  =  0,9906 (fig. 2). 
 

 
 

Figure 1. Comparative analysis of complete patterns obtained for testing  (F = 10, S = 0). 
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Figure 2. The graph Probability Weibull-3P for the complete test (F = 10, S = 0). 
 

Using the same values for the proper functioning times of the 10 products, it was imagined an 
incomplete test in which F = 10 and S = 10, but with different scenarios for the values assigned to the 
10 monitored elements which are not breaks during the experiment: 
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A. It is considered censored type test (it ends with the failure of the tenth element, tS = tF= t10), so for 
all the 10 elements that continue to operate, there are assigned the value of the last recorded time (F = 
10, S = 10, tS = tF = 220 hours). It is found in this case that the best values for the likelihood rank are 
for G-Gamma model and Exponential-2P model (figure 3). For the Exponential-2P model it is 
presented the graph Probability, with a correlation rank  =  0,9906 (figure 4). 
 

 
 
Figure 3. Comparative analysis of censored  incomplete patterns obtained for testing  (F = 10, S = 10). 
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Figure 4. The graph Probability Exponential-2P for the censored test (F = 10, S = 10). 
 

B. It is considered the truncated type test (it not ends with the failure of the tenth element, but at a 
predetermined time tS, which is higher than the last recorded time), so for all the 10 elements that 
continue to operate, there are assigned a value of the time at which the test stops (F = 10, S = 10, tS = 
300 hours > tF). It seems that, in this scenario, the modeling program performs the same 
calculation as for censored test (figure 5): the timeout of the test is considered equal to the 
time when the last item is damaged (not with the time from the datasheet). 



 8 

 
 
Figure 5. Comparative analysis of truncated incomplete patterns obtained for testing  (F = 10, S = 10, 

tS = 300 hours). 
 

There are imagined, also, other values for the truncation times of the experiment tS and it is found that 
for all these different scenarios there are obtained identical results as incomplete censored tests, i.e. the 
computing program considers all these different tests as a censored type test (with the censoring time 
equal to the time at which breaks the tenth element). 
C. Continuing the investigations, it is imagined another censored test, in which F = 10, but S = 20 
(total, 30 elements are tracked). It appears that this time it is really obtained different models (figure 6), 
so the program has discriminatory power for censorship tests. 

 

 
 

Figure 6. Comparative analysis of truncated incomplete patterns obtained for testing  (F = 10, S = 20). 
 
A simple synthetic presentation of relevant issues can be achieved, for example, calculating 
Exponential 2-P model parameters (with two parameters: failure rate  and position parameter ) for 
the presented tests (table 2). 
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Table 2. Experimental data and results obtained in the framework of reliability tests. 
 

No. Test type F S F+S The values of the Exponential-2P model parameters 
1 Complete 10 0 10  = 0,0183 hours-1;  = 102 hours. 

2 Censored 
(tS = tF = 220 hours) 10 10 20  = 0,0051 hours -1;  = 97,9431 hours. 

3 Truncated 
(tS = 300 hours) 10 10 20 identical with row 2 !

4 Censored 10 20 30  = 0,0030 hours -1;  = 94,9777 hours. 
 

It is concluded that the computer program correctly identifies the complete test and the 
incomplete tests of censored type, but not the incomplete tests of truncated type.  
As a result of this finding, we intend to perform a research to provide those theoretical elements 
necessary to identify an incomplete test of truncated type and for creating a suitable computing 
program to model reliability based on this type of tests. 

 
REALIZED RESEARCHES 
 
To find the theoretical elements necessary for processing the data obtained through incomplete tests of 
truncated type, it can be started from the most visible reliability indicator of reliability which depends 
of the type of reliability test, the estimated value of mean time between failures m [1]. 
• for complete tests: 
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• for incomplete tests of censored type [6, 8]: 
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• for incomplete tests of truncated type: 
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where: 
 - tF is the time corresponding to the failure of the last element in the censored test; 

- ttr is the truncation time of the test. 
 It can be seen that the estimated average for the truncated test mtr can be expressed according 
to the estimated average for the censored test, mcenz:  
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This relationship will be useful to correct the mean when found as a parameter in the mathematical 
model for reliability, between the following: 
• the uniform model: 
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m
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• the Exponential-1P model: 
 

  m
t

t eetR


  )(         (6) 
 
• the Exponential-2P model [12]: 
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•  the normal model (which has two parameters: average m and standard deviation  
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For the normal model it can correct even the second parameter, the standard deviation , through a 
simple relationship obtained under the "rule of 3" [5]: 
  

3
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•  the Weibull model: this case requires a more complex analysis. So, in the most general case, for 
Weibull-3P model, the mean time between failures value m  is depending of the all 3 Weibull 
parameters [2,3]: 
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where  represents the Euler function of first rank (Gamma type), defined through the analytical 
relation: 
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Since the analytic relation of this function is quite complicated, in reliability studies is more easily to 
work with the function values calculated and listed in tables [10]. 
The indicator m  is in relation to all the three Weibull parameters, so we are not dealing with a bi-
univocal relationship, deterministic, so that will be performed an analysis to decide which of the three 
indicators is most appropriate to be corrected depending on the value of m , and thus depending on the 
type of test. 
For this, we must define the three Weibull parameters [4, 13]: 
-  is the localization parameter or position parameter, an constant that defines the start time of the 
variation of reliability function R(t); 
-  is the scale parameter, expresses the extension distribution on the time axis; so, if (t – ) is equal 
with , R(t) becomes: 
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ie, scale parameter represents the time, measured from the moment  = 0, at which 63,2% of the 
elements can be failed. Therefore, this parameter expresses a characteristic operating time. 
-  is the shape parameter, it is dimensionless and represents the parameter that determines the shape 
and curves of variation for the reliability indicators. 
The parameters  and  are expressed in time units and can be graphically highlighted [7, 9] - figure 7. 

Figure 7. The highlighting of the parameters  and on the graph R(t) in the case of Weibull law. 
 
As the previously revealed problem express that the program does not offer the possibility of 
extending the distribution on the time scale according to the value of truncation time (larger than the 
censoring time), it follows that the most suitable to be put in a deterministic relationship with the mean 
time between failures m  is precisely the scale parameter . For this, there will be processed the 
analytical relations for the mean in the case of the two types of tests – the censored test (for which the 
program calculates the parameters Weibull, including cens) and the truncated test (which is intended to 
determine the parameter tr): 
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It results the inegality: 
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By reducing the inequalities (2) and (3) to equalities there is obtained concrete and satisfactory values 
for the means, so based on the relation (15) it can be effectively realized the calculation for parameter 
tr:      
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Thus, in the case of truncated test from the position 3 in Table 2, are obtaining using the computer 
program 3-P Weibull model values of three parameters:  = 1,0164;  = 205,7008 hours;  = 94,0750 
hours. Applying the relation (16), on obtain the corrected value for the parameter : 
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a value according to what is expected for the truncated test: a more extended theoretical distribution on 
the time axis, compared with the case of censored test [11].  
Therefore, the Weibull model which will be used for the truncated test from the position 3 in Table 2 
will have the parameters:  = 1,0164;  = 293,3963 hours (higher that initial value:  = 205,7008 ore); 
94,0750 hours. 
 
CONCLUSIONS 
 
For the data from warranty period, for each of the models considered can build a computing program 
that is used for the case of incomplete tests of truncated type, so: 

- relation (4): for the models who have a mean like parameter (uniform model, Exponenţial-1P 
model, Exponenţial-2P model and normal model); 

- relation (4)  and (9): for the normal model; 
- relation (16): for the Weibull-2P model and Weibull-3P model 

For other mathematical models (including the single-parametric, even if not appropriate parameter 
choise that will correct), analysis can be performed to create suitable calculation program for modeling 
reliability when testing truncated 
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