CONTRIBUTIONS TO THE INFLUENCE OF WELDING PARAMETERS ON MECHANICAL PROPERTIES OF JOINTS WELDED ON PLATES HEAD-TO-HEAD THROUGH MAG **PROCEDURE**

Constantin MIHAI¹, Ilarion BANU¹, Nicolae POPA¹

¹University of Pitesti, Romania,

Article history: Received: 10.06.2013; Accepted: 20.09.2013.

Abstract: This paper presents the influence of gas-shielded arc welding parameters (amperage I_s [A], arc tension U_a [V], welding rate V_s [cm/min]) on the mechanical characteristics of welded joints (mechanical resistance R_m , breaking energy of impact bending E_r , punch bending I_d), using the Taguchi method.

Keywords: welding process, welding parameters, joining type, experimental plan

INTRODUCTION

The welded connection of metallic materials is a wide-spread method used for constructions in various fields of modern technique. The method began developing especially in the last decade of the 20^{th} century, in addition to the development of integrated production systems managed by computers.

The design and simulation of technological processes of virtual welding are developing more and more, in addition to the continuous development of electronic computers. This development assumes creating of complex software that will contain all the information regarding one or the other product welded connection procedures.

Studies from countries with growing industries, such as U.S.A., Japan or European Community, regarding the dynamic of fuse welding procedure development in the last 25 years and its percentage at the end of 20th century and the beginning of the 21st century, have clearly shown that gas-shielded welding with consumable electrode MIG/MAG is the procedure with the most spectacular dynamic and the most used as we speak. The analysis covers the period 1975 - 1992, taking into consideration the following fuse welding procedures: manual welding with coated electrode (SE), gas-shielded welding MIG/MAG, tubular wire welding (ST) and submerged arc welding (SF).

CASE STUDY REGARDING THE INFLUENCE OF WELDING PARAMETERS ON **MECHANICAL PROPERTIES**

The quality of welded joints through non-destructive and destructive control has been studied after the construction of 9 welded samples, by modifying the main welding parameters (I_s , U_a , V_s), using the factorial plan in table 1 and Taguchi method. This method offers an instrument for studying the way in which the main welding parameters have a quantitative influence on the welded joints' mechanical characteristics. The welded samples have been made in the assembly room of JLG Manufacturing Central Europe Company in Medias, Sibiu County.

The welding installation was GULLCO type, an automate manipulator with the possibility of varying the welding rate, the wire advance rate (implicit the welding flow) and the arc tension for the MILLER 400S source.

As basic material were used S355 J2+N plates, according to EN 10025/2, with thickness \neq 12mm, synthetically worked on both sides in order to realize a X type welding slot.

Experiment	I_s (W_s)	Ua	V_{sud}
no.			
1	+1	+1	+1
2	+1	+1	-1
3	+1	-1	+1
4	+1	-1	-1
5	-1	+1	+1
6	-1	+1	-1
7	-1	-1	+1
8	-1	-1	-1
0	R	R	R

Table 1. Welding parameters scheme

As add-on material was used tubular wire with metal powder Outershield MC 710-H, classified T46 3M M 2 H5 according to EN 758, with width \emptyset 1,2mm, and the shielded gas was a mix Ar +10% CO2 (M21) according to EN 439, with a flow of 161/min.

Sample No.	I_s	W_s	U_a	V_{sud}	No of
(Experiment)	[A]	[inch/min]	[V]	[cm/min]	passing
1	314	558	35	126	12
[+1;+1;+1]					
2	301	534	31,7	39	2
[+1;+1;-1]					
3	245	411	20,1	68	8
[+1;-1;+1]					
4	230	321	18,3	22	5
[+1;-1;-1]					
5	185	230	26,4	119	19
[-1;+1;+1]					
6	185	230	26,4	22	6
[-1;+1;-1]					
7	175	230	19,2	151	21
[-1;-1;+1]					
8	180	230	19,2	22	6
[-1;-1;-1]					
0	296	532	30,4	48	4

Table 2. Welding parameters

The welding parameters values are shown in the table 2.

Sample 0 is considered to be made with the recommended welding parameters through a qualified and verified welding procedure. W_s is the advance rate of the electrode wire, parameter posted by the installation before the beginning of the welding process.

The values of breaking energies of impact bending E_r [J] at temperatures of -20°C obtained on 3 test tubes sets are presented in table 3.

Sample				$E_r 1$	$E_r 2$	$E_r 3$		
No.	I_s	Ua	V_s	[J]	[J]	[J]	<i>E_r average</i>	Obs.
1	1	1	1	<u>79</u>	<u>91</u>	75	81.66667	
2	1	1	-1	<u>65</u>	<u>75</u>	<u>70</u>	70	
3	1	-1	1	<u>23</u>	<u>8</u>	<u>18</u>	16.33333	
4	1	-1	-1	<u>27</u>	<u>21</u>	33	27	
5	-1	1	1	<u>77</u>	<u>73</u>	<u>68</u>	72.66667	
6	-1	1	-1	<u>52</u>	<u>67</u>	<u>45</u>	54.66667	
7	-1	-1	1	<u>70</u>	<u>87</u>	<u>50</u>	69	
8	-1	-1	-1	<u>47</u>	<u>66</u>	<u>55</u>	56	
0	R	R	R	84	64	77	75	

Table 3. The values of breaking energies of impact bending

The values of breaking mechanical resistance for welded joints, obtained on 2 test tubes sets are presented in table 4.

Sample				R_m 1	$R_m 2$	R_m average	
No.	I_s	U_a	V_s	[N/mm2]	[N/mm2]		Obs.
1	1	1	1	501	493	49 7	
2	1	1	-1	531	539	535	
3	1	-1	1	512	494	503	
4	1	-1	-1	228	220	224	
5	-1	1	1	533	518	525,5	
6	-1	1	-1	502	511	506,5	
7	-1	-1	1	492	490	491	
8	-1	-1	-1	501	443	472	
0	R	R	R	538	537	537,5	

Table 4. Breaking mechanical resistance

SIMILARITY AND CONCLUSION

In order to obtain conclusions on the measured values, we compare samples made with different parameters.

a) 0 with 2, I_s and $U_a \cong \text{const.}$; V_s decreases

Conclusion: K_v and R_m decrease.

b) 6 with 5, I_s and $U_a \cong \text{const.}$; V_s increases **Conclusion:** K_v and R_m increase. From a) and b) results that if V_s increases, K_v and R_m increase.

c) 8 with 6, I_s and $V_s \cong$ const.; U_a increases

Conclusion: R_m increases, K_v decreases insignificantly.

d) 4 with 6, $V_s \cong$ const.; I_s decreases and U_a increases **Conclusion:** R_m and K_v increase.

e) 5 with 7, $I_s \cong$ const.; V_s increases and U_a decreases Conclusion: R_m decreases insignificantly (7%) and K_v decreases insignificantly (5%).

f) 0 with 1, $I_s \cong \text{const.}$; V_s and U_a increase Conclusion: R_m decreases and K_v increases.

g) 4 with 3, I_s and $U_a \cong \text{const.}$; V_s increases Conclusion: R_m increases and K_v decreases.

REFERENCES

[1] Alexis, J., *Taguchi method in industrial practice – experiment plans*, Technical Publishing House, Bucuresti, 1999

[2] Atkinson, A.C. and Donev, A.N., *Optimum Experimental Designs*, Oxford Science Publications 1992.

[3] Benoist, D., Tournier, Y. and Germain Tournier, S., *Plans expériences: construction et analyse*, TEC & DOC, Lavoisier, 1994.

[4] Box, G.E.P., Hunter, W.G. and Hunter, J.S., *Statistics for Experimenters*, Wiley, New York.1978. [5] Cocan, M. and Vasilescu, A., *Mathematical modeling using MSEXCEL SOLVER, MANAGEMENT*

SCIENTIST, MATLAB, Microinformatics Group, Cluj – Napoca, 2001.