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ABSTRACT - In this paper is presented a general cinematic analysis of multicountour
mechanisms. These kind of mechanisms are found in the composure of systems that modifies
the height of heat engine valves. These can also be composed of cam-follower mechanisms in
which the cam and the follower have a plane-parallel movement. Beginning with the
structural aspects and continuing by extending the cinematic analysis methods for plane bar
mechanisms and cam mechanisms, one obtains a nonlinear equation system. The equations
are based on the contour conditions and also on the tangency in contact point (of the cam-
follower grooves) condition. Finally is obtained a nonlinearly equation system that is solvable
through the Newton - Raphson method. Next are presented the determination relations for the
velocities and accelerations of the cam-follower ensemble. In the end of the paper is presented
the calculation algorithm proposed for the cinematic analysis of complex mechanisms with
cams and bars.

INTRODUCTION

The mechanisms with many contours are usually plane mechanisms. They appear in the
composition of the mechanisms with bars, but also in the composition of the complex mechanisms
with cams. So the mechanism from fig. 1, is formed of: the plane quadrilateral mechanism ABCD,
the tetrad EFGHIJK and the mechanism with the cam 2 and follower 6, both of them being in a plan
parallel movement. In the composure of mechanism there are 8 mobile elements, 11 cinematic
couples of fifth grade and one of fourth grade. It has four contours of mobility 1. Structurally, the
contact couple from M can be replaced with a cinematic chain made of two fifth class couples (the
equivalence theory of Gruebler and Harisberger). So, the mechanism from fig. 2 was obtained from
the mechanism of fig. 1 by transforming the forth degree couple from M in the element 9 and the
couples M' and M". The mechanism still has four contours.

Fig. 1. Multicontour mechanism. Fig. 2. Fundamental mechanism.
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POSITIONAL ANALYSIS

In literature, the positional analysis of the mechanisms is done using few methods. Next we
will present an analytic method based on the projecting contour method. The method is used
on a four contours mechanism. For the mechanism from figure 3 we can identify the contours:
ABCD, ABMFE, EFGHI and EFGJK.

Ys

common
tangent in M

Fig. 3. Mechanism with four layers.

The mechanism is composed from the articulated quadrilateral ABCD that has a cam solidary
with the rod 2. The Follower 5 is solidary with the rod of the mechanism with EFGHIJK
triad. If there are no geometrical symmetries, the cam and the follower have a plane-parallel
movement. The mechanism has one degree of mobility, the other elements having
desmodrome movements.

In order to be able to write the contour equations, we will have to determine the coordinates
of the point M (X,,,Y,,) in the general reference system XOY, M(X,,Y,) in the local reference
system x,By, solidary with element 2 and M(Xs,ys) in the local reference system x;Fy;
solidary with element 5. We consider as known the profile of the cam and of the follower, the
curbs being given by the parametric equations:

X, =% (A); Y, =Y,(2) M
Xs=Xs(7)5 Y5 =Ys5(v)

Expressing the coordinates of the point M in all the three reference systems, we obtain the
equalities:

Xy = Xg +X, €080, —Y,sin@Q, = X + X; Cos Qs — Y sin Qs ,

2)

The tangent in point M to the two curves (fig. 4) is defined by the vectors t, and t, with the

Yy =Yg +X,8InQ, + Y, cos @, =Yg + X, SIn @5 + Y5 COS @5

components TZ(%’%J and r{%,%) . The collinear condition is:
v Y

T, =&14 3)
that conducts to the relations

X, oS @, — Y5 sin @, = E(X; cos @5 — Y5 sin @)
X; sin @, + Y, cos @, = §(X sin @5 + Y cOS @)
where:

(4)
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,odx, o, ody, o, dxg o, dys
X2 = > Yo = s Ry = s Y5 = .
da da dy dy
After eliminating the parameter & the next equality is obtained:
(GX5 + Y3 Y5) sin(@, = @5) = (Y5 = ¥5X) c0S(9, = 9s) (6)
Next we will write the contour equations:

_ — —s  —

AB+BC+CD=AD

—_— — — —

EF + FG+GH + HI =El
EF + FG+GJ + JK =EK (7

—_—  — — — —

()

Measuring the angles made by the elements with the axis OX from the end of the element in
the counter clockwise sense, like in figure 3, we obtain the projection of the relations (7) on
the reference system OXY axes:

ABcosg, +BCcosgp, +CDcosp, = Xy — X,

ABsin @, + BCsing, + CDsing, =Y, —Y,

EF cosg, + FGcos @, + GH cos(p, —a) + Hl cos @, = X, — X¢
EF sin g, + FGsin ¢, + GH sin(@, —o) + Hl sing, =Y, =Y,
EF cosq, + FGcos @, + GJ cos @, + JIK cos g = X, — X ®
EFsing, + FGsing, +GJ sinp, + JKsingg =Y, —Y¢

XA+ ABcoso, +X,cosp, —Y,sing, = X + EF cos@, + X, cosp; — Y sin @,

Y, + ABsin@, + X, sin@, + Y, cosp, =Yg + EFsin@, + X, sin @, + Y, cos ¢,

In the relations (8), the unknowns are: ¢,, @5, ¢©,, ¢s, 0, ®;, Pz, A, v. S0, in order to be
able to solve the projection equations system, we have to add to the 8 relations (8) the tangent
relation (6). We obtain in this way a 9 position functions system:

F, = ABcosg, + BCcosp, +CDcos@, — X, + X,

F, = ABsing, + BCsing, +CDsing, - Y, +Y,

F, =EF cos@, + FG cos ¢, + GH cos(p, —a) + Hl cos @, — X, + X

F, =EFsing, + FGsin @ + GH sin(¢, —a) + Hl sin @, =Y, +Y,

F, =EF cosg, + FGcosp, +GJ cosp, + K cosp, — X + X, 9)
F, =EFsing, + FGsin @, + GJ sin@, + JK sin @, =Y, + Y

F, =X,+ABcoso, +X,cos¢p, —Y,sing, — Xz —EF cos@, — X, cos@s + Yy, sin @

F, =Y, +ABsing, +X,sin@, +Y, cos¢, =Y. —EF sing, — X, sin@, — Y, cos ¢,

Fy = 06X + Y3 ¥5) sin(@, — 05) — (G Y5 — Y3 X5 ) cos(@, — 5)

If one notates with {F} the vector of the nine position functions:

{F}= (F1 F, R R, K K K K K )T (10)
and with {®} the unknowns vector

{®} = ((pz Py Py G5 O @ Qg A Y)T 1D
one obtains the vectorial equation

{F}=0 (12)

The solution of the system (12) can be found out wusing the iterative
Newton-Raphson method. To initiate the iterative process it is necessary for us to know the
approximate values of the unknowns’ vector (11) which is denoted with {®°}
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.
@=(05 ¢ o) of o ¢ @ X y). (13)
This is determined by using a graphic method or an assisted graphic one.

The Jacobean [W] of the system (12) is

[oF, oF oF oOF oOF oF OF OF OF |
ap, 0ps 0p, 095 0¢, 0Op; Opg Oh Oy
oF, oF, oF, oF, oF, OoF, oF, OF, OF,
0p, 0¢p; O, O0ps O¢; 0, 0y Oh Oy

wiel o ] "

oF, oF, oF, oF, oF, oF, oF, oF, oF,
|00, 09, 0o, Ops 09, 0p, Oy O\ Oy |
We obtain the solution to the iteration i ([1]) with the relation:

{®}; ={D};, _[\N]i_—ll{F}i—l (15)
the iterative process continues until
(@) -(@) e j=12...9, (16)

where with [ was denoted the maximum permissible error of the solution. For a given value
of the parameter [, we obtain the solution (15) with the right precision. Next step, where the
angle ¢; becomes o, + Ag,, in this way being study all the interval[0, 2x]. Usually, the angular

stepisAg, =1°.
VELOCITIES ANALYSIS

In a cinematic analysis problem of the bars mechanisms we determine the velocities of the
points that materialize the cinematic couples, the velocities of the gravity centers of the
elements, the angular velocities of the elements etc. The literature is very rich in things like that.

The problem of the velocities analysis is not very difficult in comparison to the positional
analysis problem, when we usually have to solve a nonlinear equations system.

The absolute velocities of the points B, C, F, G, H, J and the angular velocities of the
elements o,, o;, 0,, ©;, 0, ®,, ©y are obtained deriving the position functions and most

of all solving a linear equations system.

In the case that there are also class couples in contact, out of the absolute velocities, it
presents a special interest the relative velocities in the contact point, these last ones being
usually responsible of the wear process.

This is why next we will have a special attention just for the velocities from the contact point
M between the cam and the follower.

Taking into account the relations (2) that define the position of the point M in the general
reference system, we obtain the matrix expression:
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where:
Xg=X,+ABcoso,; Yy =Y, +ABsing,; Xp = X + EFcos@,; Y- =Y. + EF sing,;
cos —sin Ccos —sin
[Rz]:|: ' ¢, (Pz} [Rs]:{ . s (Ps} (18)
sing, cosQ, sin@;  CoOS Qs
Knowing the angular velocity o, = % of the element 1, the angular velocity of the cam 2 is:
do, do,
0,=——=—=0,,
Tt de, (19)
and of the follower 5 is:
dos dos
=—==——0,.
At de, (20)

To study the relative movement from the point M, we introduce a ring (noted with 3) of zero
dimension between the bodies in contact. We note with vy , vy, and v, the absolute

velocities of the points M,, M, and Ms, cu Vy  , Vy v, the relative velocities of the point

M3 on the cam, also on the follower (fig. 4).

parallel with the tangent in M

Fig. 4. The absolute and the relative velocities in the contact point M.

relative movement between the two profiles is written vectorial:
vM} :vMZ +VM3MZ :vMS +\7M3M5 (21)
Deriving in relation to time the relation (17) we obtain

{V““}:KBB}[RZ]'D}[&]'M:KF}[RS]'DZ}[RS]'M 22)

where:
. —sing, —cosQ 0 -1
[Rz]:(”z{ ’ . z}zmz'{ ][Rz]:@z'[g]'[Rz] (23)
CosQ, —sing, 1 0
and analogue
[Rs]: s - [Q] : [Rs] (24)
From the relations (22) are obtained the equalities from below:

=0 et ool ) * o eI [ 0700 |

dYB/d(pl 2 d yz/d(Pl
dX./de X dx,/do @3)
o e o fabRI| ¢ [ralr} e

and comparing the result given by the relation (21), using the identification, it results:
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Vi, ) = wl[d XB/d(ﬂ +0,[Q]- [Rz].[);j; Ny, } = mz[Rz],{dXz/d@l}

dYB/d(Pl dyZ/d(Pl
ax. /do « dx,/do (26)
{VMS}:(DI|:dYF/d(p1 :|+(05[Q][R5]|:y5:|, {VMBMS}:(OS[RS].|:d yS/d(Pl:|

ACCELERATIONS ANALYSIS

Like for the velocities, next we will present the relations that define the absolute and the relative
accelerations from the contact point M between the cam and the follower.

We note with &, , ay, , ay, the absolute accelerations of the points M,, M; , M; with
y,m, » aw,m, the Coriolis accelerations and with &, ., 8y v, the relative accelerations.

In point M is written the vectorial equation

aM3 = aM2 +§lf/l3Mz +aM3M2 = aM5 + 3&3M5 +aM3M5 (27)
Deriving in relation to time the relation (22) we obtain the equalities:

_[dXg/de, | d* Xg/dg] JR.1= o2 1%
{aMz}_s{dYB/d(Pl}+ml|:d2YB/d(P12}4_[82[(2] [Rz] wz[Rz]] {y }4_

2

d dx,/do dx,/de d’x,/deo;
207 dzz [Q].[RZ].{d yzéd(;}[Rz].{gl[d yz//dq)l}m{dz yzéd(;ﬂ _
1 2 1 2 1 2 1

_ (28)
dX./de, | ,[d*X./d¢? 2 Xs
= Ql-[R.1- 2[R ]I
ot o [ ot |+l R-olR [+
i 2 2
20 SR 00 e IR o] 0 e £ 61000
do, dy;/de, L dy;/de, d ys/dq)l
and next, comparing with the relation (27), by identification, we obtain the equalities:
dXg/doi| o[d"X;/do] e 111 %
= 1 Qf-|R, |- o3 |R, || ;
=5y [ S B lo) R R T
do dx,/de, dx,/de, | ,[d*x,/de}
@y, 1 =2w—2|Q [ };{a =R ~a{ +o SRS E
M;M, d(P [ ][ ] yz/d([)l M;M, [2] ldyz/d(Pl 1 d2 yz/d([)lz
dX./do d’x,/d¢? | X @)
a _ F 1 5 1 Q R _ ZR X 5 :
1o e || 1 o) il ]
d(p dx;/do, | dx/de, | L[ d*x/de?
{ag .1 =20 —> R { sy, b= { +o ’ .
M;M; [][5] dy5/d(P1 M;M; [ ] dy5/d([)1 ldzys/d([)]z

CALCULATION ALGORITHM FOR CINEMATIC ANALYSIS

In the case of the multicontour mechanism are known:

- the cam and the follower profile given by the functions x,(A),y,(A), Xs(y).ys(y) and
their derivatives of first and second order X;, Y5, X5, Vi, X3, Y5, X5, Ve

- the dimensions I;,i=1,2,..,8 and the approximate positions of the couples from the
articulated mechanism;

- the maximum error value ¢ of determination of the solution, € = 0,000001.
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The calculation algorithm is:

e Using the relations (1) + (16) we make the computation program for the positional
analysis. This has in its composition two procedures, one to compute the position
functions given by the relations (9) and one to compute the jacobian given by the
relations (14).

¢ In a repetitive cycle we give values for the angle ¢, from one degree to another from 0°
to 360° with a constant step of 1°. For each step are determined in a repetitive cycle (18)
with the precision & = 107°. Calculation formulas are the ones given by the relations:
(9), (14), (15).

e The beginning values of the iterative process: 03, 03, 0, 02, 0f, ¢, o3 A’ =0, y* =0

are necessary only for ¢, =0, for the next steps the approximate necessary values of the
iterative process are exactly the values obtained previously. After the exit from the
repetitive cycle we retain the values determined previously as vectors of 360 position.
¢ In the end we write in a text folder the obtained values.
Based on the analytic relations of determining the velocities and the accelerations, we continue
the computation program with two other procedures:

e the numerical procedure of obtaining the reduced velocities and accelerations based on the
relations of numerical derivation:

d(Pj P TPy d2(Pj| _(Pj,i+1_2(pj,i+(Pj,i—1 .

- = S = = 5 , 1=2,5 (30)

do, 0=, 2A¢, do, ‘ (A(Pi)

P1=Pyj
e the procedure of obtaining the matrix as a result of the multiplying of two matrices;
e the obtaining of the numerical values of the angular velocities:
de, do, dx, dy, dx; dy; dX; dYy dX; dY;
do, dg, "do,"dg, "do,"dg, " de, "do,” de, "de,
e and those of the angular accelerations:
e, d>q, d’x, d’y, d’x, d’y, d° Xy d°Y, d*Xp d°Y:
dof "doj “de; “del "dof "doi " def “de  dof de
e the obtaining in a repetitive cycle FOR in which we give values for the angle o,

from one degree to another from 0° to 360° with a constant step of 1° of the
numerical values of the velocities and accelerations with the relations (26) and (29);
e the writing into two text folders of the obtained values,
o the graphic retrieval of the numerical values.

CONCLUSIONS

The studied mechanisms are often found in the composure of systems that allow changing the
height of heat engines valves. Depending on the configuration, each mechanism usually has
its own method of cinematic analysis. A general analysis method was obtained by choosing
the plan parallel movement for the cam and follower, for the cinematic analysis of
multicontour mechanisms with a cam-follower mechanism.

The cinematic analysis method presented in the paper, is based on the contour projecting method
and combines the specific cinematic analysis of the cam mechanisms with the cinematic analysis
of the plane bars mechanisms. Solving the nonlinear position equations system is done with the
iterative Newton-Raphson method, and the determination of the velocities and accelerations is
done with numerical methods of derivation.
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The method is general and it can be applied to the simple bars mechanisms and also to the
complex cam mechanisms. Using the presented algorithm we can realise a computation program
by which we obtain numerical results. The algorithm can be completed with the computation
relations of the linear and angular velocities and accelerations of the elements. A matrix in which
we work allows an easy implementation in any environmental programming.
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