A KINEMATIC STUDY OF A MECHANICAL VARIABLE VALVE TIMING MECHANISM WITH CONTINUOUS VALVE LIFT

Stelian Mihalcea ${ }^{* 1}$, Vasile Dumitrescu ${ }^{1}$, Nicolae Pandrea ${ }^{1}$
${ }^{1}$ University of Piteşti, Romania
e-mails: stelian_mihalcea_07@yahoo.com, nicolae_pandrea37@yahoo.com

KEYWORDS: timing mechanism, variable valve lift, kinematic analysis, analytic method

Abstract

An innovating solution for throttle-free load control for spark-ignition engines is variable valve timing system with continuous valve lift (VVTL System, or VVA - Variable Valve Actuation System). A variable valve timing mechanism which can provide continuous valve lift (VVL System) represents a good solution for internal combustion engines to become more efficient, with an improved dynamic performance, to generate fewer emissions by reducing fuel consumption and, furthermore, allows technologies like gasoline direct injection (GDI), homogeneous charge compression ignition (HCCI) / controlled auto ignition (CAI), etc. to perform an optimized operation. In this paper is presented a kinematic analysis, using the analytic method, of a valve timing mechanism with continuous valve lift variation and constant duration. This type of mechanism ensures a continuous valve lift between two extreme valve heights. It is also presented a numerical example, in which the solving principle is based on a numerical method.

1. INTRODUCTION

For the traditional spark-ignition engines the timing configuration represents a compromise (1) which does not allow the best engine performance to be achieved for all regime and load. Infinitely variable inlet valve lift and timing is used to control engine load, reducing throttling losses and fuel consumption (2). It also improves low-end torque and transient response.
Variable valve timing (VVT) technology allows better engine performance by reducing fuel consumption and therefore low emissions (3), higher efficiency, highly precise responsiveness of the powertrain (4).
The key parameter for petrol engine combustion, and therefore efficiency, emissions and fuel consumption is the quantity and characteristics of the fresh air charge in the cylinders. In conventional petrol engines, the throttle-based air control wastes about 10% of the input energy in pumping the air (5). VVT systems with continuous valve lift variation, usually combined with cam phasers, are designed to eliminate the classical throttle and its inconvenience.

2. MECHANISM DESCRIPTION AND OPERATION

The proposed mechanism is a mechanical, continuously VVL timing system, Fig. 1, designed to ensure for the intake valves a continuous range of lifts comprised between a minimum lift which corresponds to the engine idling and a full lift for the maximum engine load. The mechanism's main idea belongs to Professor Vasile Dumitrescu who adapted a standard valve timing mechanism, which perform a unique valve lift, Fig. 2, into a mechanical variable valve timing mechanism with continuous variable valve lift. Therefore the classical roller rocker 2
was divided in two parts as follows: the oscillating roller cam follower 2 and the lever 7 which acts the engine valve, each one linked on the initial joint O.

Fig. 1. The kinematic schema of the mechanism

Fig. 2. The scheme of classical valve timing mechanism which underpins the Dumitrescu VVL mechanism

Further more, some elements were introduced: 3 - push rod, 4 - oscillating rocker jointed to base in $O_{4}, 6$ - push rod equipped with a roller in O_{8} and linked to the lever 7 in $O_{7}, 1$ - cam. Hence the mechanism (Fig. 2) is planar, composed with $n=7$ active elements, the adjustment element R being stationary (actually, its movement is controlled). The connection between elements is via Class IV couplings denoted with C_{1}, C_{2} and via Class V couplings denoted $O, O_{1}, O_{2}, \ldots, O_{7}$; as consequence $c_{4}=2$ and $c_{5}=9$. It results that the mechanism's mobility is unique (6).

$$
\begin{equation*}
M=3 n-c_{4}-2 c_{5}=21-2-18=1 . \tag{2.1}
\end{equation*}
$$

The adjustment of the valves height is made by positioning the push rod 6 via the adjustment element R wherewith is linked by the lever 5 . The adjustment curve's shape is thus circular, being formed with a circle arch with the radius r_{7}, and the center in O_{7} when the contact C_{1} belongs to the cam's base circle.
The mechanism's minimum adjustment is made by rotating the adjustment element R until O_{8} is collinear with O_{4} and O_{7}. We mention that in the present configuration, the mechanism can not provide valves deactivation, maximum valve lift related to minimum adjustment being above zero.
The motion is transmitted by the camshaft to the oscillating roller cam follower 2, push rod 3, the rocker arm 4 which is equipped with an adjustment curve, C_{α}. Further on, the rocker arm acts on the push rod 6 which rotates the levers 5 and 7. Finally the movement of the lever arm 7 is transmitted to the engine valve.

3. THE KINEMATIC ANALYSIS

3.1. Kinematic aspects. Notations

In order to realize the mechanism's kinematic analysis, we define the main dimensions and nomenclature (Fig. 3):

Fig. 3. Kinematic schema with nomenclature

- The general coordinate system $O X Y$, and local coordinate systems $O_{1} x_{1} y_{1}, O_{2} x_{2} y_{2}$,
- The fixed points coordinates in $O X Y: O_{1}\left(X_{1}, Y_{1}\right), O_{4}\left(X_{4}, Y_{4}\right)$, and $O(0,0)$,
- The adjustment of valve height is made by angular positioning of the adjustment element R around the fixed joint O_{4}, the amount of rotation being quantified by angle α,
- $\quad r_{1}$ is the radius of the cam base circle which rotates around $O_{1}\left(0, Y_{1}\right)$, therefore we impose $X_{1}=0$,
- $\quad r_{2}, r_{4}, r_{7}, r_{8}$, the radii of the circles point-centered respectively in: $O_{2}, O_{4}, O_{7}, O_{8}$,
- The lengths denoted with: $l_{2}=O O_{2}, l_{3}=O_{2} O_{3}, l_{4}=O_{3} O_{4}, l_{5}=O_{4} O_{5}, l_{6}=O_{5} O_{6}$, $l_{7}=O O_{7}, l_{8}=O_{6} O_{7}, l_{9}=O S$,
- The angle θ_{1} between $O X$ axis and $O O_{2}$ segment, in clockwise direction,
- The angle θ_{2} between $O X$ axis and $O_{2} O_{3}$ segment,
- The angle θ_{3} between $O X$ axis and $O_{3} O_{4}$ segment,
- The angle θ_{4} between $O X$ axis and $O_{5} O_{6}$ segment,
- The angle θ_{5} between $O X$ axis and $O O_{7}$ segment,
- The angle θ_{6} between $O X$ axis and the line defined by O_{7} and O_{8},
- The angle α between $O Y$ axis and $O_{4} O_{5}$ segment,
- The angle φ between $O X$ axis and $O_{1} x_{1}$ axis solidar with the cam.

Is an indication that the situation in which $\varphi=0$, the mechanism is in the reference position, and notation data will be accompanied by the character ${ }^{*}$, resulting the angles $\varphi^{*}=0, \theta_{1}^{*}$, $\theta_{2}^{*}, \ldots, \theta_{6}^{*}$, respectively the coordinates of the mobile points $O_{2}\left(X_{2}^{*}, Y_{2}^{*}\right), O_{3}\left(X_{3}^{*}, Y_{3}^{*}\right)$, $O_{6}\left(X_{6}^{*}, Y_{6}^{*}\right), O_{7}\left(X_{7}^{*}, Y_{7}^{*}\right), O_{8}\left(X_{8}^{*}, Y_{8}^{*}\right)$.

3.2. The reference position

We consider that the mechanism's reference position is when the cam rotation angle $\varphi=0$. In this position the contact joint C_{1} between the cam and the next element is made on the cam's base circle; actually, any situation in which the contact joint C_{1} belongs to the cam's base circle is similar with the reference position. Therefore, writing elementary mathematical relations we get:

$$
\begin{gather*}
X_{2}^{*}=l_{2} \cos \theta_{1}^{*} ; Y_{2}^{*}=-l_{2} \sin \theta_{1}^{*}, \tag{3.1}\\
X_{3}^{*}=X_{2}^{*}+l_{3} \cos \theta_{2}^{*} ; Y_{3}^{*}=Y_{2}^{*}+l_{3} \sin \theta_{2}^{*}, \tag{3.2}\\
X_{5}=X_{4}+l_{5} \sin \alpha ; Y_{5}=Y_{4}-l_{5} \cos \alpha, \tag{3.3}\\
X_{7}^{*}=l_{7} \cos \theta_{5}^{*} ; Y_{7}^{*}=l_{7} \sin \theta_{5}^{*}, \tag{3.4}\\
X_{S}^{*}=l_{9} \cos \theta_{5}^{*} ; Y_{5}^{*}=l_{9} \sin \theta_{5}^{*}, \tag{3.5}\\
X_{6}^{*}=X_{5}+l_{6} \cos \theta_{4}^{*} ; Y_{6}^{*}=Y_{5}+l_{6} \sin \theta_{4}^{*}, \tag{3.6}\\
X_{8}^{*}=X_{7}+\left(r_{7}-r_{8}\right) \cos \theta_{6}^{*} ; Y_{8}^{*}=Y_{7}+\left(r_{7}-r_{8}\right) \sin \theta_{6}^{*} . \tag{3.7}
\end{gather*}
$$

3.3. A certain position

In order to write the cam definition, let us consider that the cam's parametric equations in its local coordinate system $O_{1} x_{1} y_{1}$ are $\left[x_{1}\left(\xi_{1}\right), y_{1}\left(\xi_{1}\right)\right]$.
Also, we consider the local coordinate system $\mathrm{Ox}_{2} y_{2}$ solidar with the oscillating roller cam follower $2\left(\mathrm{OO}_{2}\right.$ segment) so point O_{2} belongs to the system abscissa, Fig. 3. The parametric equations of the circle point-centered in O_{2}, written in $\mathrm{Ox}_{2} y_{2}$ are:

$$
\begin{equation*}
x_{2}=l_{2}+r_{2} \cos \xi_{2} ; y_{2}=-r_{2} \sin \xi_{2} . \tag{3.8}
\end{equation*}
$$

On the other hand, in the general reference system $O X Y$, the contact joint between the cam and the O_{2} point centered circle is written:

$$
\begin{gather*}
x_{2} \cos \theta_{1}+y_{2} \sin \theta_{1}-x_{1} \cos \varphi+y_{1} \sin \varphi=0, \tag{3.9}\\
-x_{2} \sin \theta_{1}+y_{2} \cos \theta_{1}-Y_{1}-x_{1} \sin \varphi-y_{1} \cos \varphi=0 . \tag{3.10}
\end{gather*}
$$

Having the same tangent, we deduce:

$$
\begin{equation*}
\frac{x_{1 p} \cos \varphi-y_{1 p} \sin \varphi}{x_{1 p} \sin \varphi+y_{1 p} \cos \varphi}=\frac{\lambda\left(x_{2 p} \cos \theta_{1}+y_{2 p} \sin \theta_{1}\right)}{\lambda\left(x_{2 p} \sin \theta_{1}+y_{2 p} \cos \theta_{1}\right)} \tag{3.11}
\end{equation*}
$$

wherefrom

$$
\begin{equation*}
\left(x_{1 p} x_{2 p}+y_{1 p} y_{2 p}\right) \sin \left(\varphi+\theta_{1}\right)+\left(y_{1 p} x_{2 p}-x_{1 p} y_{2 p}\right) \cos \left(\varphi+\theta_{1}\right)=0 \tag{3.12}
\end{equation*}
$$

wherein $x_{1 p}, y_{1 p}$ are the derivatives of x_{1}, y_{1} with respect to the cam rotation angle φ, and $x_{2 p}, y_{2 p}$ are the derivatives of x_{2}, y_{2} with respect to the ξ_{2} angle.
For the reference position:

$$
\begin{equation*}
\xi_{1}^{*}=\frac{\pi}{2}-\cos ^{-1} \frac{Y_{1}^{2}+\left(r_{1}+r_{2}\right)^{2}-l_{2}^{2}}{2\left|Y_{1}\right|\left(r_{1}+r_{2}\right)} \tag{3.13}
\end{equation*}
$$

$$
\begin{align*}
& \xi_{2}^{*}=\pi-\cos ^{-1} \frac{l_{2}^{2}+\left(r_{1}+r_{2}\right)^{2}-Y_{1}^{2}}{2 l_{2}\left(r_{1}+r_{2}\right)}, \tag{3.14}\\
& \theta_{1}^{*}=\frac{\pi}{2}-\cos ^{-1} \frac{l_{2}^{2}+Y_{1}^{2}-\left(r_{1}+r_{2}\right)^{2}}{2 l_{2}\left|Y_{1}\right|} \tag{3.15}
\end{align*}
$$

Further on, the position of the point O_{3} is given by

$$
\begin{equation*}
X_{3}=l_{2} \cos \theta_{1}+l_{3} \cos \theta_{2} ; Y_{3}=l_{2} \sin \theta_{1}+l_{3} \sin \theta_{2} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{3}=X_{4}+l_{4} \cos \theta_{3} ; Y_{3}=Y_{4}+l_{4} \sin \theta_{3}, \tag{3.17}
\end{equation*}
$$

hence

$$
\begin{align*}
& l_{2} \cos \theta_{1}+l_{3} \cos \theta_{2}-X_{4}-l_{4} \cos \theta_{3}=0, \tag{3.18}\\
& -l_{2} \sin \theta_{1}+l_{3} \sin \theta_{2}-Y_{4}-l_{4} \sin \theta_{3}=0 . \tag{3.19}
\end{align*}
$$

For the reference position:

$$
\begin{gather*}
\theta_{2}^{*}=\frac{\pi}{2}-\sin ^{-1} \frac{X_{3}-X_{2}}{l_{3}}, \tag{3.20}\\
\theta_{3}^{*}=\sin ^{-1} \frac{Y_{3}-Y_{4}}{l_{4}} . \tag{3.21}
\end{gather*}
$$

The positions of the points O_{6}, O_{8}, O_{7} expressed in the general reference system $O X Y$ are:

$$
\begin{gather*}
X_{6}=X_{5}+l_{6} \cos \theta_{4} ; Y_{6}=Y_{5}+l_{6} \sin \theta_{4}, \tag{3.22}\\
X_{8}=X_{4}+\left(r_{4}+r_{7}\right) \cos \left(\gamma-\theta_{3}^{*}+\theta_{3}\right)+\left(r_{7}-r_{8}\right) \cos \theta_{6} ; \\
Y_{8}=Y_{4}+\left(r_{4}+r_{7}\right) \sin \left(\gamma-\theta_{3}^{*}+\theta_{3}\right)+\left(r_{7}-r_{8}\right) \sin \theta_{6}, \tag{3.23}\\
 \tag{3.24}\\
X_{7}=l_{7} \cos \theta_{5} ; Y_{7}=l_{7} \sin \theta_{5}
\end{gather*}
$$

wherein

$$
\begin{equation*}
\gamma=\frac{3 \pi}{2}-\sin ^{-1} \frac{X_{4}-X_{7}}{r_{4}+r_{7}} \tag{3.25}
\end{equation*}
$$

and expressing the lengths $O_{7} O_{8}, O_{6} O_{8}, O_{6} O_{7}$, it results

$$
\begin{gather*}
\left(X_{8}-X_{7}\right)^{2}+\left(Y_{8}-Y_{7}\right)^{2}-\left(r_{7}-r_{8}\right)^{2}=0 \tag{3.26}\\
\left(X_{8}-X_{6}\right)^{2}+\left(Y_{8}-Y_{6}\right)^{2}-\left(r_{7}-r_{8}-l_{8}\right)^{2}=0, \tag{3.27}\\
\quad\left(X_{7}-X_{6}\right)^{2}+\left(Y_{7}-Y_{6}\right)^{2}-l_{8}^{2}=0 \tag{3.28}
\end{gather*}
$$

In the reference position we get:

$$
\begin{gather*}
\theta_{4}^{*}=\pi+\tan ^{-1} \frac{Y_{5}-Y_{7}}{X_{5}-X_{7}}-\cos ^{-1} \frac{l_{6}^{2}+\left(X_{7}-X_{5}\right)^{2}+\left(Y_{7}-Y_{5}\right)^{2}-l_{8}^{2}}{2 l_{6} \sqrt{\left(X_{7}-X_{5}\right)^{2}+\left(Y_{7}-Y_{5}\right)^{2}}}, \tag{3.29}\\
\theta_{5}^{*}=\pi+\tan ^{-1} \frac{Y_{4}}{X_{4}}+\cos ^{-1} \frac{l_{7}^{2}+X_{4}^{2}+Y_{4}^{2}-\left(r_{4}+r_{7}\right)^{2}}{2 l_{7} \sqrt{X_{4}^{2}+Y_{4}^{2}}} \tag{3.30}\\
\theta_{6}^{*}=\frac{\pi}{2}-\sin ^{-1} \frac{X_{6}-X_{7}}{l_{8}} . \tag{3.31}
\end{gather*}
$$

Solving the equations (3.9), (3.10), (3.12), (3.18), (3.19), (3.26), (3.27) and (3.28) in which the unknown parameters are $\xi_{1}, \xi_{2}, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}$, for $\varphi=1 \div 360^{\circ}$, it results the movement of the mechanism.

3.4. Valve displacement

Knowing the variation of θ_{5} angle for the entire kinematic cycle, the valve lift function is found using the relation (3.32), Fig. 4:

Fig. 4. The valve displacement schema

$$
\begin{equation*}
s(\varphi)=l_{9}\left[\sin \psi-\sin \left(\psi-\theta_{5}+\theta_{5}^{*}\right)\right] \tag{3.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi=\cos ^{-1} \frac{l_{10}}{l_{9}} \tag{3.33}
\end{equation*}
$$

4. IMPLEMENTATION AND RESULTS

Let us consider the approximate dimensions used to validate the computational model, as follows: $\alpha=18 \div 62.2^{\circ}, O_{1}(0,-35) \mathrm{mm}, O_{4}(-10,50) \mathrm{mm}$, and the constant parameters given by the values: $l_{2}={O O_{2}}_{2}=25 \mathrm{~mm}, \quad l_{3}=O_{2} O_{3}=69 \mathrm{~mm}, \quad l_{4}=O_{3} O_{4}=23 \mathrm{~mm}$, $l_{5}=O_{4} O_{5}=20 \mathrm{~mm}, \quad l_{6}=O_{5} O_{6}=30 \mathrm{~mm}, \quad l_{7}=O O_{7}=25 \mathrm{~mm}, \quad l_{8}=O_{6} O_{7}=28 \mathrm{~mm}$, $l_{9}=O S=53 \mathrm{~mm}, l_{10}=O P=52.8344 \mathrm{~mm}, r_{1}=12 \mathrm{~mm}, r_{2}=8 \mathrm{~mm}, r_{4}=8 \mathrm{~mm}, r_{7}=47 \mathrm{~mm}$, $r_{8}=5 \mathrm{~mm}$. The final dimensions of the mechanism will be established after the mechanism optimization procedure.
For the mechanism's reference position and $\alpha=18^{\circ}$ we obtain: $\xi_{1}=45.585^{\circ}, \xi_{2}=78.463^{\circ}$, $\theta_{1}=55.952^{\circ}, \quad \theta_{2}=90.882^{\circ}, \quad \theta_{3}=-4.295^{\circ}, \quad \theta_{4}=193.789^{\circ}, \quad \theta_{5}=186.811^{\circ}, \quad \theta_{6}=106.882^{\circ}$, $\gamma=254.364^{\circ}$.
In order to realize the mechanism kinematic simulation, we consider the cam is half circle half ellipse, Fig. 5, its equation being written in $O_{1} x_{1} y_{1}$, as follows:

$$
\left\{\begin{array}{l}
x_{1}=r_{1} \cos \xi_{1} \tag{3.34}\\
y_{1}=\bar{r}_{1} \sin \xi_{1}
\end{array}\right.
$$

where $\bar{r}_{1}=\left\{\begin{array}{l}r_{1}, \text { for } \xi_{1} \in[0, \pi] \\ 1.5 r_{1}, \text { for } \xi_{1} \in(\pi, 2 \pi)\end{array}\right.$.

$1 y_{1}$

Semicircle

Fig. 5. Semi ellipse cam design
Solving the equations (3.9), (3.10), (3.12), (3.18), (3.19), (3.26), (3.27), (3.28) requires a numerical computing method. Therefore we use the Newton-Raphson numerical method, in which the initial approximation results from the reference position of the mechanism, i.e. for $\varphi=0$. The obtained results represents the initial approximation for $\varphi=1^{\circ}$. The procedure is repeated until $\varphi=360^{\circ}$. By modifying the adjustment angle α within the mentioned range the mechanism performs different valve heights.

Fig. 6. The adjustment of mechanism in the reference position $(\varphi=0)$

Fig. 7. The extreme adjustment of mechanism in a certain position $\left(\varphi=135^{\circ}\right)$

In Fig. 6 is represented the mechanism adjustment procedure. It is easy to observe that in this case, when the contact C_{1} belongs to cam base circle, any variation of the adjustment angle α does not affect the valve position, i.e. the valve remains closed, and in the same time contacts C_{1} and C_{2} are maintained. This fact is due to the shape of the adjustment curve C_{α}, which is a circular shape.
In Fig. 7 is represented the mechanism in a certain position, when the contact C_{1} belongs to cam profile. In this case, by varying the adjustment angle α it results different valve heights (in this diagram is represented the extreme adjustment for $\alpha=18^{\circ}$ when the mechanism performs maximum valve lift, and $\alpha=62,2^{\circ}$ when the mechanism performs minimum valve lift).

Fig. 8. The valve lift family of laws obtained with a semi-ellipse cam
If we maintain a fixed adjustment angle and vary the cam rotational angle φ we get a valve lift law. In Fig. 8 is designed the family of valve lift laws which the mechanism can generate, with respect to relation (3.32). The maximum valve lift is around 10 mm and the minimum valve lift is 0.35 mm . The mechanism performs continuous valve lift, so any valve lift can be achieved in this range.
Also, the valve opening and closing points remain unchanged during the adjustment variation, which means that the duration of effective valve opening remains the same. Therefore this mechanism is a Constant Duration Variable Valve Actuation (CDVVA), according to reference (7).

5. CONCLUSIONS

After this study on the variable valve lift mechanism with continuous valve lift the following conclusions were reached:

- the valve's position must remain unchanged during the rotation of the adjustment lever. This condition must be respected by all the VVL mechanism, no matter the type of the valve lift mechanism or the way the lift is set;
- the kinematic analysis shows that the mechanism offers a continuous variation of the valve lift, with valve displacement starting from around 0.4 mm lift to a maximum lift around

10 mm , without changing the valve opening and closing points. The minimum valve lift must be set on a precise value, around $0.4 \div 0.5$ millimeters, correlated with the engine idling.

- a disadvantage of this mechanism is that it does not allow zero valve lift. This disparity will be removed after a complete mechanism optimization, in which the valve displacement at minimum adjustment will be one of the optimization criteria.
The future work will be concentrated on the mechanism's cam synthesis and optimization.

ACKNOWLEDGEMENT

This work was partially supported by the strategic grant POSDRU/88/1.5/S/52826, Project ID52826 (2009), co-financed by the European Social Fund - Investing in People, within the Sectoral Operational Programme Human Resources Development 2007-2013.

REFERENCES

(1) Trajkovic, S., "Study of a Pneumatic Hybrid aided by a FPGA Controlled Free Valve Technology System", Thesis for the Degree of Licentiate in Engineering, Lund University, Sweden, 2008.
(2) Bickerstaffe., S., "No half measures", Automotive engineer, Apr. 2010.
(3) Pierik, R., J., Burkhard, J., F., "Design and Development of a Mechanical Variable Valve Actuation System", SAE Technical Paper Series, 2000-01-1221.
(4) Klauer, N., Kretschmer, J., Unger, H., "The Powertrain of the BMW 535i Gran Turismo", ATZ autotechnology, No. 5, Oct. 2009.
(5) Bernard, L., Ferrari, A., Micelli, D., Perotto, A., Rinolfi, R., Vattaneo, F., "Electrohydraulic Valve Control with MultiAir Technology", ATZ autotechnology, No. 6, Dec. 2009.
(6) Pandrea, N., Popa, D., "Mecanisme. Teorie şi aplicații CAD", Ed. Tehnică, Bucureşti, 2000.
(7) Pattakos M., Pattakos J., Pattakos E., "Fully variable valve actuation", Patent No.: US 2008/0302318 A1, Dec. 11, 2008.

