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ABSTRACT - Kinematic couplings clearances modified by changing the kinematic chain 
motion laws of motion of elements and shocks that may occur. The paper presents the general 
form of the differential equation of motion obtained using multibody method for planar 
kinematic chains with rotational kinematic couplings with clearances 
 
INTRODUCTION 
 
Establish the work of a new form of the matrix constraints made possible the development 
multibody method that allows the numerical study of the general movement of articulated 
planar systems games and numerical study of the positions of equilibrium and vibrations of 
these systems 
 
DYNAMIC EQUATIONS OF MOTION 
 
If no clearances rotation kinematic couplings 
 
By isolating the element with the sequence number j , taking into account the principle of 
action and reaction, noting the points hk OO , obtained with the reaction hhkk VHVH ,,,  
represented in figure 1. 
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Figure 1. Isolation item with sequence number of cinematic couplings j  rotation without 
clearance 
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Considering the notation: 
- jm , mass element; 
- jJ , moment of inertia to the center of gravity jC ; 
- jYjX FF , , projections on the axes OYOX , of the resultant external force acting on the 

item;  
- jM , time resulting from point jC , the momentum theorem [1] to obtain equations  

,, hkjYjjhkjXjj VVFYmHHFXm +−=+−= &&&&  (1)
and the angular momentum theorem [1] to point jC  to obtain the  

)()()()( j
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kYkjjj UVUHUVUHMJ ⋅+⋅−⋅−⋅+=θ&&  (2)

Equations (1), (2) by using the notations 
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{ } [ ]TjjYjXj MFFF = , (4)

{ } [ ] { } [ ]Thhh
T

kkk VHRVHR == ,  (5)
and taking into account the first relation (3.5), is written as matrix  

[ ]{ } { } ( )[ ] { } ( )[ ] { }h
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kjjj RBRBFqm +−=&&  (6)
Based on relation (6) that for a plan to obtain, with notations, 

[ ]
[ ] [ ]
[ ] [ ]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

.........

...0

...0

2

1

m
m

m

, 

(7)

{ } { } { }[ ] ,...21

TTT qqq =  (8)

{ } { } { }[ ] ,...21

TTT FFF =  (9)

{ } { } { }[ ] ,...21

TTT RRR =  (10)
equation 

[ ]{ } { } [ ] { } ,RBFqm T−=&&  (11)
where [ ]B  is the matrix of constraints. 
 
If the clearance rotation kinematic couplings 
 
By isolating the element with the serial number j , taking into account the principle of action 

and reaction, noting the reactions of hk NN ,  points ( ) ( )j
h

j
k OO , we get the representation in 

figure 2. 
From theorem momentum equations are obtained; 
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theorem and the angular momentum equation is obtained 
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Figure 2. Isolation item with serial number j , with clearance joint. 

 
Equations (12), (13) taking into account the previous notation, meet in the equation matrix  

[ ]{ } { } [ ] [ ]Tj
hh

Tj
kkjjj ENENFqm )()( +−=&&  (14)

Matrix equation (14) is formally identical to equation (6) the matrices ( )[ ]j
kB  are replaced with 

matrices ( )[ ]j
kE  

 
Differential equations of motion matrix equation system 
 
If point kO  is a kinematic coupling of rotation with the clearance, and the point hO  is a 
kinematic coupling of rotation without clearance, then, obviously, we obtain the equation 

[ ]{ } { } [ ] [ ]{ },)()(
h

j
h

Tj
kkjjj RBENFqm +−=&&  (15)

if, for example, point kO is required motion, and the point hO  is a kinematic coupling of 
rotation with the clearance, then get the matrix equation 

[ ]{ } { } [ ]{ } [ ] ,~ )()( Tj
hhk

j
kjjj ENRBFqm +−=&&  (16)

Thus the system of figure 3, which is rotating element, the elements are driven only by their 
own weights and 3O  rotational kinematic coupling is the clearance matrix differential 
equation is  

[ ]{ } { } [ ] { } ,RBFqm T−=&&  (17)
where 
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{ } { } { } { }[ ] ,432

TTTT qqqq =  (19)

{ } [ ] ,000000 432
TgmgmgmF −−−=  (20)

{ } [ ] ,5544322
TVHVHNVHR =  (21)
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Figure 3. Planar system of bars at which the element 1 has uniform rotational motion, the joint 

3O  is with clearance, and the elements are acted only by their own weights. 

. 
 
At the matrix equation (17) the following equality 

[ ]{ } { } ,Cqm =&  (23)
where 

{ } [ ] ,000000cossin1
TttlC ωωω −=  (24)

By derivation with respect to time of the relationship (23) and equation (17) to obtain the 
general matrix equation of motion of multibody systems 
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(25)

where matrix { }R  of the reactions is actually a matrix with sign changed Lagrange’s 
multipliers 
 
APPLICATION 
 
For the mechanism designed in fig. 4 we examine its movement, knowing that the 2O , 3O  
points are clearance pin joints, the element 1 has a rotational motion with constant angular 
speed ω , and the initial position being represented in the figure. 
Also, the following numerical data are known: m l 1.01 = , m l 28.02 = , m l 3.03 = , 

kg mm 232 == , 2kgm JJ 06.032 == , srad 10=ω , Nm M 20−= , m rr 02.032 == . 
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Figure 4. Application. 

The initial conditions are:  st 0= , m X 35.02 = , m Y 315.02 = , o602 =θ , m X 65.03 = , 

m Y 315.03 = , o603 −=θ , sm X 02 =& , sm Y ω= 2.02
& , srad 02 =θ& , sm X 305.03 ω=& , 

sm Y ω= 05.03
& , srad 

33
ω

−=θ& . 
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the next system is obtained 
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For our numerical example the results are captured in the diagrams of fig. 5, 6, 7, 8, 9, 10. 
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Figure 5. The variation ( )t22 θ=θ  for  st 5.00 ≤≤ . 
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Figure 6. The variation ( )t33 θ=θ  for  st 5.00 ≤≤ . 
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Figure 7. The variation ( )tNN 22 =  for  st 5.00 ≤≤ . 
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Figure 8. The variation ( )tNN 33 =  for  st 5.00 ≤≤ . 
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Figure 9. The variation ( )tHH 44 =  for  st 5.00 ≤≤ . 
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Figure 10. The variation ( )tVV 44 =  for  st 5.00 ≤≤ . 

 
From the diagram presented the reader can easily observe the non-periodical character of the 
variations for different parameters. Each diagram starts with a transitory period for about 

 s2.0  when the motion has a random aspect. After this period, the diagrams start to look 
smooth. The start period can be considered to be characteristic to a many degrees of mobility 
mechanism because of the clearances. 
 
CONCLUSIONS 
 
In our paper we presented a general multibody type method to study the planar mechanisms 
with clearances. We obtained the constraints matrix in the most general case and the matrix 
differential equation of motion. Finally a complete application was solved. The clearances in 
the joints lead to a quasi-chaotic behavior of motion. The study of this motion will be the goal 
of our future work. 
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