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ABSTRACT - For mechanical transmissions, all component gears have the same kinematics 
no matter the stage of the gear box. Consequently, the inertial characteristics of the 
mechanical transmission depend only on the square of the gear box ratio. 
For an epicyclic gear box, the speeds of the components depend on the manner in which the 
power is transmitted through the planetary mechanisms; consequently, the inertial 
characteristics of the transmission depend on the structure of the epicyclic gear box. 
The paper presents a simplified model for calculation of the inertia of an elementary epicyclic 
mechanism. The analysis includes the error estimation as well as the implementation of this 
simplified model into the analysis of the epicyclic gear box. 
 
 
The usages of the planetary gear boxes become cover a larger area of drivelines for heavy 
vehicles, and for off-road vehicles too. Accompanied by a torque converter, the planetary gear 
box allows an automatic match of the engine output with the motion requirements which 
eases the driving and improves the running performances. The complexity of the kinematic 
structure of the transmissions including torque converter and planetary gear box derives from 
the existence of different moving elements for each stage as well as from the complex 
movement of the satellite gears belonging to the elementary epicyclic mechanisms. 
 
For constant input speed, the kinematics of the planetary gear box may be studied using 
various methods as graph theory (6) or by extending “the traditional concept of a lever 
representation of a planetary gear set to one that includes negative lever ratios” (5). The 
methods were found suitable in a series of applications as in (1) and (4). A comprehensive 
approach is presented in (2) and (3) having as aim the calculation of speeds, torques, power 
flows and efficiency of the planetary gear box. All the paper cited above consider the 
stationary regime of the planetary mechanisms characterised by constant speed. 
Consequently, the inertia of the elements which form the planetary trains is neglected. This 
hypothesis proved to be too rough for solving some specific aspects such as the shifting 
process or the acceleration performances of the vehicle. In order to use the analysis method 
presented in (2) and (3) without neglecting the inertia of gears, a simplified model of epicyclic 
gear mechanism was developed, the main stages being presented below. 
 
For the elementary epicyclic mechanism with 3DOF, the kinematics is fully described by the 
Willis relation: 
 ( )1 2 01 0K Kω + ⋅ω − + ⋅ω =  (1) 
where: ω  - angular speed of the external elements noted with index 1 for sun gear, 2 for 
planet gear and 0 for carrier arm respectively; K  - the constant of the epicyclic gear 
mechanisms: 
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where z represents the teeth number of the gear. The relation (1) give by integration and by 
derivation respectively: 
 ( )1 2 01 0K Kϕ + ⋅ϕ − + ⋅ϕ =  (2) 

 ( )1 2 01 0K Kε + ⋅ε − + ⋅ε =  (3) 
For constant speed of the external elements: 

 01 2 dd d0; 0; 0
d d dt t t

ωω ω
= = = , 

the torque are given by the following relations: 

 
( )

1 1

2 0

1 1;
1

M M
M K M K

= =
− +

. (4) 

 
 

 
For the situation of acceleration, the existence of the inertia of gear produces a modified 
distribution of torques among the external elements. In order to specifically analyse the 
influence of inertia, the EI type gear mechanism is considered (see Figure 1).  
 
The nodal representation is shown in Figure 2 The nodal representation of the epicyclic 
gear mechanism emphasising the external elements using the following notations: 1 for the 
sun gear, 2 for the planet gear and 0 for the carrier arm, respectively. 
  
For this case, the Lagrange equation is applied considering the epicyclic gear mechanism as a 
system of mass points with two degree of freedom: 

d 1,2
d j

j j

W W Q j
t
⎛ ⎞∂ ∂

− = =⎜ ⎟⎜ ⎟∂ω ∂ϕ⎝ ⎠
. 

 
As generalized coordinates the angular displacement of elements 1 and 2 are adopted. 
Consequently, the total energy of the system is done by the following sum: 
 1 2 0 sW W W W W= + + + , (5) 
where the energy of the individual elements are: 

 
* 22 2
0 01 1 2 2

1 2 0; ;
2 2 2

JJ JW W W ⋅ω⋅ω ⋅ω
= = = . (6) 

 

2planet gear : z

 satelit gear :s sn z
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1sun gear : z
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Figure 1 The structure of EI type 

epicyclic gear mechanism 

1
2
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Figure 2 The nodal representation of the 

epicyclic gear mechanism 
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In the relation (6), the term *
0J  represents the inertia of the carrier arm itself, without 

satellites. The satellites have a complex movement consisting of a rotation around its axle 
with the speed sω  and a rotation around the axle of sun gear with the speed 0ω : 

 
( )1 02
1s K
ω −ω

ω =
−

, (7) 

and: 

 
( ) ( )1 0 1 02 2

;
1 1s sK K
ϕ −ϕ ε − ε

ϕ = ε =
− −

. (8) 

 
For sn  satellites having the mass sM  and the moment of inertia sJ , the total energy of the 
satellites becomes: 

 
2 2 2

0 0

2 2
s s s

s s
J M RW n

⎛ ⎞⋅ω ⋅ ⋅ω
= ⋅ +⎜ ⎟

⎝ ⎠
. (9) 

Introducing the relations (6) and (9) in the relation (5), it results the total energy of the 
epicyclic gear mechanism: 

 
* 2 2 2 22 2
0 0 0 01 1 2 2

2 2 2 2 2
s s s

s
J J M RJ JW n

⎛ ⎞⋅ω ⋅ω ⋅ ⋅ω⋅ω ⋅ω
= + + + ⋅ +⎜ ⎟

⎝ ⎠
. (10) 

 
Taking into consideration the relation (7), the relation (10) becomes: 

 
( ) ( ) ( )

( )2 2 22 2
2*0 0 01 2 2

1 0 0 12 2 2

14 4 4
2 2 2 21 1 1

s s s s s s s J Kn J M R n J n JJW J J
KK K K

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ω ωω ω
= + + + + + − + ω ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.(11) 

 
The overall inertia of the carrier arm and sn  satellites is noted 0J :  
 * 2

0 0 0s sJ J n M R= + ⋅ ⋅ . 
 
Using the above notation, the relation (11) becomes: 

 
( ) ( ) ( )

22 2
0 0 11 2 2

1 02 2

4 4 4
2 2 21 1 1

s s s s s sn J n J n JJW J J
K K K

⎡ ⎤ ⎡ ⎤⋅ ω ⋅ ⋅ ⋅ω ⋅ωω ⋅ω
= + + + + −⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. (12) 

From the Willis relation results the speed of the planet gear: 

 ( ) 0 1
2

1 K
K

+ ⋅ω −ω
ω = . 

Consequently, the relation (12) may be rewritten: 

 
( ) ( )

( )

( )
( )

222
201 2

1 02 22 2

2
0 12

14 4
2 21 1

14
1

s s s s

s s

J Kn J n JJW J J
K KK K

J Kn J
KK

⎡ ⎤ ⎡ ⎤+⋅ ω ⋅ω
= + + + + + −⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+⋅

− + ω ⋅ω⎢ ⎥
−⎢ ⎥⎣ ⎦

 (13) 

The derivation of the relation (13) gives: 

 
( ) ( )

( )22
1 1 02 2 2

1

14 4d
d 1 1

s s s s J Kn J n JJW J
t K KK K

⎡ ⎤ ⎡ ⎤+⎛ ⎞ ⋅ ⋅∂
= ε + + − ε +⎢ ⎥ ⎢ ⎥⎜ ⎟∂ω − −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

 (14) 
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( )

( )
( )

( )2
2 2

1 0 22 2
0

1 14 4d
d 1 1

s s s sJ K J Kn J n JW J
t K KK K

⎡ ⎤ ⎡ ⎤+ +⎛ ⎞ ⋅ ⋅∂
= −ε + + + +⎢ ⎥ ⎢ ⎥⎜ ⎟∂ω − −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

 (15) 

 
The elementary machine work is calculated using the relation: 
 1 1 2 2 0 0Q M M Mδ = ⋅δϕ + ⋅δϕ + ⋅δϕ , (16) 
and, taking into consideration the relation (2), it results: 

 ( ) 22
1 1 0 0

1 K MMQ M M
K K

⎡ ⎤+ ⋅⎛ ⎞δ = − ⋅δϕ + + ⋅δϕ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

. (17) 

Finally, the following relations result: 

 
( ) ( )

( )22 2
1 1 0 12 2 2

14 4
1 1

s s s s J Kn J n JJ MJ M
K K KK K

⎡ ⎤ ⎡ ⎤+⋅ ⋅
ε + + − ε + = −⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (18) 

 
( )

( )
( )

( ) ( )2
2 2 2

1 0 0 022 2

1 1 14 4
1 1

s s s sJ K J K K Mn J n JJ M
K K KK K

⎡ ⎤ ⎡ ⎤+ + + ⋅⋅ ⋅
−ε + + ε + + = +⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (19) 

The differential equation (18) and (19) describe accurately the working of the epicyclic gear 
mechanism taking into consideration the inertia of all elements which constitute the epicyclic 
gear. 
 
Below is discussed the consequences of the hypothesis according to which the inertia of the 
satellites is neglected (but not their mass). This hypothesis is based on the observation that the 
inertia moment depends on the square of the gear radius, and the radii of the satellites are 
small compared with those of the sun gear or the planet gear.  
 
Imposing the condition     Js = 0 , the equations (18) and (19) become: 

 ( )22 2
1 1 0 12 2

1J KJ MJ M
K K K

+⎡ ⎤ε + − ε = −⎢ ⎥⎣ ⎦
 (20) 

 ( ) ( ) ( )2
2 2 2

1 0 0 02 2

1 1 1J K J K K M
J M

K K K

⎡ ⎤+ + +
−ε + ε + = +⎢ ⎥

⎢ ⎥⎣ ⎦
 (21) 

The equations (20) and (21) allow an approximate calculation of the reduced inertia moments. 
In order to evaluate the level of errors, the most significant situations are analysed below. 
 
If the planet gear is blocked, it results: 
 ( )2 1 00; 1 Kε = ε = + ⋅ε  (22) 
Introducing the relations (22) in the relation (18), it results the exact distribution of torques 
acting on the external elements: 

 ( )
( )

2
0 1 12

81
1

s sn J MK J M
KK

⎡ ⎤⋅
ε + + = −⎢ ⎥

−⎢ ⎥⎣ ⎦
. (23) 

Using the relation (20) the approximate distribution results: 

 ( ) 2
0 1 11 MK J M

K
⎡ ⎤ε + = −⎣ ⎦ . (24) 
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Supposing that the input element is 
the sun gear, the nodal representation 
of the epicyclic gear mechanism is 
presented in Figure 3 where between 
the torques acting on the epicyclic 
gear mechanism the relation (4) 
applies: 

1

2

1M
M K
′
= . 

 
The balance of the torque on the ramified node gives, in general: 
 1 1 1 1 0M J M′ + ⋅ε + = . 
 
Supposing that 1 0ε >  (the input shaft is accelerated), then: 

 1 1 1

2

1 .M J
M K
− ε

=  (25) 

 
Taking into consideration the relation (22), the relation (25) becomes: 

 ( ) 2
0 1 11 MK J M

K
⎡ ⎤ε + = −⎣ ⎦  (26) 

which is identical with the relation (24). 
 
The relative error generated by the hypothesis according to which the inertia of the satellites 
is neglected is done by the relation: 

 
( ) ( )2 2

1

8=
11

s sn J
J KK

Δ
+−

. (27) 

 
Similarly, if the sun gear is blocked, the relative error is done by the following relation: 

 
( )1 2

2
0

4=
1

s sn J
JK J
K

Δ
− +

 (28) 

For the usually values of the parameters of the relations (27) and (28) ( 4...6sn = , 2...4K = ) 
and considering the dimensions of the gears used in the planetary gear boxes, the relative 
errors are below 4%. 
 
The analysis presented above allows the conclusions presented below. 
 
The proposed model is based on the hypothesis according to which the inertia of the satellites 
is neglected; thus, the rotation of the satellites around their axes is neglected. Nevertheless, 
the mass of the satellites is taken into consideration being included into the relation of the 
equivalent inertia of the carrier arm: 
 * 2

0 0 0s sJ J n M R= + . 
The resulting relative error is considered acceptable.  
 
The relations which describe the distribution of the torques acting on the external elements of 
the epicyclic gear mechanism are the following: 

1
2

0

1M
0M

2M
1J

0J

K

1 1Jε ⋅

1M ′ 0M ′

0 0Jε ⋅

 
Figure 3 The nodal representation of the epicyclic 

gear mechanism 
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1

1 1

2
2 2

d
1d

d
d

M J
t

KM J
t

ω
−

=
ω

−
 (29) 

 
( )

1
1 1

0
0 0

d
1d

d 1
d

M J
t

KM J
t

ω
−

=
ω − +−

 (30) 

The relations (29) and (30) allow the utilisation of the methods and algorithms presented in 
(2); thus, it becomes possible to use the same analysis methods for both stationary and 
transient regimes of the planetary gear boxes. 
 
By the use of the simplified model for a given planetary gear box, the overall inertia of the 
gear box, reduced to the input shaft, may be determined for each stage using the nodal 
approach exposed in 10, without an unacceptable increase of the calculation volume. 
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