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ABSTRACT – In our paper we discuss the stability of the equilibrium position for a quarter 
automotive with nonlinear quadratic suspension. For the stable positions of equilibrium we 
also obtain the approximations of the small oscillations. The theory is applied to a realistic 
numerical example. 
 
1. INTRODUCTION 
 
Usually, the suspension of a quarter of automobile is represented by two masses linked one to 
another by a linear spring, one mass being connected to the ground by another nonlinear 
spring. The two masses represent the wheel and the corresponding part of the entire 
automobile [1, 2, 3, 4]. There are only a few approaches, which deal with nonlinear 
suspensions [5, 6, 7]. Some papers deal with time delay feedback [8] or magnetorheological 
dampers [9]. In our paper we consider that the wheel can be simulated by a mass and a 
nonlinear quadratic spring. 
 
2. MODEL OF SUSPENSION 
 
The model considered in this paper is captured in Fig. 1. The elastic force in the spring 1 is 
considered to be given by 
 

2
11 zzkF ε+= , (1)

 
where z  is its elongation. 
 
Isolating the two masses, one obtains the differential equations of motion 

( ) gmxxkxxkxm 1
2
111112211 −ε−−−=&& , ( ) gmxxkxm 212222 −−−=&& . (2)

 
 With the notations 
 

11 ξ=x , 22 ξ=x , 31 ξ=x& , 42 ξ=x& , (3)
 
the system (2) is brought to a system of four nonlinear differential equations of first order 
 

31 ξ=ξ& , 42 ξ=ξ& , ( )[ ]gmkk
m 1

2
1111122

1
3

1
−ξε−ξ−ξ−ξ=ξ& , 

( )[ ]gmk
m 2122

2
4

1
+ξ−ξ−=ξ& . 

(4)



116 

x
m2

2

k2

k1, ε1

m1

x1

 
Fig. 1. A quarter–car model. 

 
3. EQUILIBRIUM POSITIONS 
 
The equilibrium positions are obtained at the intersections of the nullclines; hence, the 
following system is deduced 
 

03 =ξ , 04 =ξ , ( ) 01
2
1111122 =−ξε−ξ−ξ−ξ gmkk , ( ) 02122 =+ξ−ξ gmk . (5)

 
Subtracting the last two equations, one gets 
 

( ) 02111
2
11 =++ξ+ξε gmmk . (6)

 
Making now 11 ξ−ξ a , one obtains 
 

( ) 02111
2
11 =++ξ−ξε gmmk . (7)

 
Analyzing the last two equations and applying the Descartes theorem, the following 
statements hold true: 
 – if 01 >ε , then the equation (6) has zero or two negative roots; 
 – if 01 <ε , then the equation (6) has one positive root and one negative root. 
 
Denoting by Δ  the discriminate of the equation (6), 
 

( )gmmk 211
2

1 4 +ε−=Δ , (8)
 
We can say: 

 – if ( )gmm
k

21

2
1

1 4
0

+
<ε< , then the system has two equilibrium position given by 

 



117 

0
2 1

1
1 <

ε
Δ−−

=ξ
k , 0

2 1

1 <
ε

Δ+−
=ξ

k , 11 ξ<ξ ; (9)

 

 – if ( )gmm
k

21

2
1

1 4 +
=ε , then the system has only one equilibrium position (the 

equation (6) has a double negative root) given by 
 

1

1
11 2ε

−=ξ=ξ
k ; (10)

 
 – if 01 <ε , then the system has two equilibrium position given by 
 

0
2 1

1
1 <

ε
Δ+−

=ξ
k , 0

2 1

1 >
ε

Δ+−
=ξ

k , 11 ξ<ξ ; (11)

 
 – if 01 =ε , then the equation (6) becomes a linear one with the solution 
 

( ) 0
1

21
1 <

+
−=ξ

k
gmm . (12)

 
From the last expression (5) we get the value 2ξ  at the equilibrium. 
 
4. STABILITY OF THE EQUILIBRIA 
 
The Jacobi matrix for the system (4) reads 
 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00
00
1000
0100

4241

3231

jj
jj

J , (13)

 
where 
 

1

11

1

1

1

2
31

2
mm

k
m
kj ξε

−−−= , 
1

2
32 m

kj = , 
2

2
41 m

kj = , 
2

2
42 m

kj −= . (14)

 
The characteristic equation 
 

( ) 0det =λ− IJ  (15)
 
where I  is the four order unity matrix, takes the form 
 



118 

0

0
0
100
000

4241

3231

=

λ−
λ−

λ−
λ−

jj
jj

 (16)

 
where from 

0
2

4241

32
2

31 =
λ−

λ−
jj

jj
, (17)

 
that is 
 

( ) 032414231
2

4231
4 =−+λ+−λ jjjjjj , (18)

 
which is a bi–square algebraic equation. 
 
The discriminate of this equation is 
 

( ) ( ) ( ) 3241
2

423132414231
2

4231 44 jjjjjjjjjj +−=−−+=Δ . (19)
 
The equation (18) has all the roots pure, distinct, imaginary if and only if 
 

0>Δ , 04231 <+ jj , 032414231 >− jjjj . (20)
 
Keeping into account the relations (14), we get 
 

2

2

1

11

1

1

1

2
4231

2
m
k

mm
k

m
kjj +

ξε
−−−=− , (21)

 

2

2

1

11

1

1

1

2
4231

2
m
k

mm
k

m
kjj −

ξε
−−−=+ , (22)

 

21

2
2

3241 mm
kjj = , (23)
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21

21
32414231

2
mm
k

mm
kkjjjj ξε

+=− , (24)

 
hence, the conditions (20) become 
 

042
21

2
2

2

2

2

1

11

1

1

1

2 >+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ξε
−−−

mm
k

m
k

mm
k

m
k , (25)

 

02
2

2

1

11

1

1

1

2 >+
ξε

++
m
k

mm
k

m
k , (26)
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02 111 >ξε+k , (27)

 
where 1ξ  is given by one of the expressions (9), (10), (11) or (12). 
 
If 01 =ε , then the conditions (25), (26) and (27) are fulfilled and it results that in the linear 
case the equilibrium is simply stable. 
 
Let us observe that the condition (25) is always true. 
 

If ( )gmm
k

21

2
1

1 4 +
=ε  and 1ξ  is given by the expression (10), then the conditions (26) and 

(27)lead to 
 

0
1

1

1

2 >+
m
k

m
k , (28)

 
00 > , (29)

 
and, because the relation (29) is false, it results that the equilibrium is unstable. 
 
If 01 <ε , then, considering the root 01 <ξ  (given by (11)), we observe that the conditions 
(26) and (27) hold true and it results that this equilibrium position is simply stable. For the 
root 1ξ  from (11), the condition (27) leads to 
 

0>Δ− , (30)
 
which is false, i.e. the corresponding equilibrium position is unstable. 
 

If ( )gmm
k

21

2
1

1 4
0

+
<ε<  and 1ξ  is given by 1ξ  in (9), then the condition (27) leads to the 

same relation (30), hence the equilibrium is unstable. For 1ξ  the condition (27) is true and the 
condition (26) offers 
 

0
11

1

1

2 >
Δ

++
mm

k
m
k , (31)

 
an obviously true relation, hence the equilibrium is simply stable 
 
5. SMALL OSCILLATIONS AROUND THE STABLE EQUILIBRIUM POSITIONS 
 
Let us return to the system (4) and let us give sufficiently small in norm perturbations to the 
parameters iξ , i.e. iii ζ+ξξ a , 4 ,1=i . One thus obtains the system in deviations 
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31 ζ=ζ& , 42 ζ=ζ& , ( )[ ]2
11111122

1
3 21

ξ+ζξ+ζ−ζ−ζ=ζ kk
m

& , ( )12
2

2
4 ζ−ζ−=ζ

m
k&  (32)

 
or, by linearization, 
 

31 ζ=ζ& , 42 ζ=ζ& , ( )[ ]221112
1

3 21
ζ+ζξ−+−=ζ kkk

m
& , 2

2

2
1

2

2
4 ζ−ζ=ζ

m
k

m
k& . (33)

 
Denoting now 
 

1

112
11

2
m
kka ξ−+

= , 
1

2
12 m

ka −= , 
2

2
21 m

ka −= , 
2

2
22 m

ka = , (34)

 
we get the system 
 

02121111 =ζ+ζ+ζ aa&& , 02221212 =ζ+ζ+ζ aa&& . (35)
 
From the first relation (35) one has 
 

( )1111
12

2
1

ζ+ζ−=ζ a
a

& , ( )( )1111
12

2
1

ζ+ζ−=ζ &&&& a
a

iv . (36)

 
und, replacing in the second relation (35), one obtains 
 

( ) ( ) ( ) 0121122211122111 =ζ−++ζ++ζ aaaaaaiv && . (37)
 
Denoting now 
 

( ) 04 2112
2

2211 >+−=Δ aaaa  (38)
 
the eigenpulsations are given by 
 

( )
2
2211

1
Δ++

=
aap , ( )

2
2211

2
Δ−+

=
aap . (39)

 
6. NUMERICAL APPLICATION 
 
Let us consider the values kg 501 =m , kg 2502 =m , mN 1600001 =k , mN 160002 =k , 

26
1 mN 102 ⋅=ε , 2sm 8065.9=g . 

 
Let us observe that 
 

( )
6

21

2
1

1 101754.2
4

0 ⋅=
+

ε<
gmm

k . (40)

 



121 

and the equilibrium positions are 
 

m 0514.01 −=ξ , m 0286.01 −=ξ  (41)
 
first being unstable and the second simply stable. 
 
Moreover, the parameters given by (34) are (for 1ξ ) 
 

3
11 1052.3 ⋅=a , 32012 −=a , 6421 −=a , 6422 =a , (42)

 
Δ  has the value 
 

12025856=Δ  (43)
 
and the eigenpulsations are 
 

1
1 s 379.59 −=p , 1

2 s 622.7 −=p . (44)
 
The numerical simulation was performed for the initial data ( ) m 03.00

1 −=ξ , ( ) m 19.00
2 −=ζ , 

( ) sm  00
3 =ξ , ( ) sm  00

4 =ξ  and it is captured in Fig. 2. 
 
The reader can observe the good agreement between the numerical results and the theory. 
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Fig.2. The results of the numerical simulation; ( )txx 11 =  for s 50 ≤≤ t , ( )txx 22 =  for 
s 50 ≤≤ t , ( )122 xxx =  s 20 ≤≤ t  
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7. CONCLUSIONS 
 
In our paper we presented a nonlinear model for a quarter–car. We treated all the equilibrium 
positions and we discussed their stability in the most general case. The theory is confirmed by 
the numerical simulations. 
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