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ABSTRACT - We present a method for estimating the power spectral density of the
stationary response of the simple pendulum consist of a mass m, approximated here as point-
mass which is attached to the lower end of light, rigid rod, of length 1. The upper end of the
rod is free to pivot about point, at 0. If attention is restricted to oscillation of the pendulum in
a vertical plane the one has a single degree of freedom system, approximately. Numerous
applications of this technique for studying the response of non-linear oscillators to random
excitation have described in the literature (Roberts, Spanos). An equivalent linear system is
derived, from which the power spectral density is deduced. The theoretical analyses are
verified by numerical results.

1. SYSTEM MODEL

The pendul from the below figure, formed from a lenght bar | with insignificant mass, caught
in point O with the spring with the k elasticity constant on which hangs the body with the
mass.
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Fig 1. The elastic pendulum.
The ordinary differential equation of the motion can be written as:

J, 60 =mglsin@—kd?sin @ cosd—cd? cos> 0-6+ F(t)l , (1)
or
ml? 6+kd? sin O cos O+cd > cos® -6—mgl sin O=F ()l , ()
or
z9+izcos2 0-9+&25in¢900s 0-Yin (9:m . 3)
ml ml I mi

If we consider the Tylor developments around point 0 for the function sin# and cosé, form
where we keep just the first two termens, we can write
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0’ 0’

sin@z@—?,cosﬁzl—7 4
and equation of motion, while neglecting very small terms we get
0+ (120704 K990 92K iy (5)
ml* ml*> | 6l 3ml’ ’

F(®

where u(t):—l, A and « are the nonlinear factors to control the type and degree of
m

nonlinearity in the system [1].
If we notate

: cd’ . (kd*> g g 2kd j
h(6(t),6(t)) = 1-16%)6+ —=|0+a|=- 0, 6
O.60) mlz( ) [ml2 IJ (6| 3ml® ©)
the equation of motion is
Ot + By (1) + 700, 08) = WCE) . (7
The difference between the nonlinear stiffness [2,3] and linear stiffness terms is
& =h(0(1),0(1) ~ B, O1) 7., O(1) (8)
The value of p,can be obtained by minimizing the expectation of the square error
0 Ele1=0, ©)
0 ﬁim
0 2
E[£%]=0. (10)
éa 7/ech

Because [6,8]

E{e”}=E{N}+ B B 17y B0 128 EON+2 8,07 ENO 0} 27, E{ON}, (11)

we have
2

E{Oh} B E{0 }~7.,EL06)=0, (12)
E{Oh}~ B, E{0 0}y, E{6*}=0. (13)
Obtain the solutions

5 _Et0 JE(ON}-E{0OE (N} (4)

E{0°}E{0°}-(E{00})

=E{92}E{9h}—E{96’}E{9h}

ech . ) (15)
E{0*}E{0°}~(E{06})’
Because E{B 0}=0, the solutions are simplified
: E {nh}
E{6h ch ==
Pa=— 00 T Ty (16)
E{0*}
Obtain the linearization equation [2,3,5,6]
o(t)+ E{‘?h} o(t) + E{Z?i O(t) = u(t), (17)

E{6)
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where

E{oh} _cd’ E{éz}_ﬂE{ézez} +(kol2 ng{ee}ﬂ(g 2kd2JE{963}
|

. 2 . . 2 . 2 P (18)
ey ™| e By | \M ey O M ey

E{Oh}cdz[E{Hé}_lE{ﬁé}]{kdz g]E{@z}w{g 2kd2]E{6’4} (19)

E{6>} ml’ E{6"} E{6*} ml? E{6*} 6l 3ml* JE{6*}
Because
A . 2 N2
E{99}=0;E{993}=0;E{02}=0'29;E{94}=3049;M=20‘29, (20)
E{0°}
the relations (18) and (19) become
2
E{@z}
2 2
Eibh _ de 9 s 9 2 e (22)
E{¢-} (ml~ | 6l 3ml
The equation of motion can be write
- cd? kd> g g 2kd’
0+——(1-2102,) 0+ -2 $3a| >-—|o’, |@=u(t). 23
o /) Hml2 |j a(a 3m|2j09} © 23)

Using the Fourier transform [5,8,9] of equation (23.) we obtain for the frequency response
function
1

H@= oo’ W m mg ) -
~Mew +|a)—(1 246% )+~ M9 43q] M9 _2C 12
I? I I o 3l
The power interspectral density of response [3] is given by equation
S (0)= Q) (25)
2 2 2,44
MM M2 | +89 (120202, )
I I o 3l I*
The mean square value for the displacement of the system is
o =j°; S,(w)dao, (26)
or
& = 2 da: 2 . 27)
0
od” O (122202, )| [ M _M9 |3 MO 2o
I > o 3
The velocity variance of the system is
2
ot = T . 28)

o med’ (1-240%)
The value of 0 p, is
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2. NUMERICAL RESULTS

(29)

The pendul formed from a lenght bar | = 0,5m, with insignificant mass, caught in point O,with

the elasticity constant k = 36ﬂ , in which hangs the body with the m =1kg mass and

m
N-s ) -2
c=1—,d=0,4m, a =5rad ~,41=0,34rad .
m
We consider the power spectral density S, =1N”-s.
Obtain
o’ = d
v 0,5:1,28(1-0,6807,)(26,48-13,507, )
or
o’ =0,26rad”,
[
where
o =29"10.
0
Obtain
, o aSl? o rad’
o = 2 2\ %2
o med’®(1-2407, ) s
& =0,76"3%
0 S

The undamped natural frequency is

kd*> g g 2kd*) , .
Sy (LB Y 4,795,
Pe \/(mlz |] a(m smiz )7 ¢

The power spectral density of response is

S, (w)= S - :
[22,97—ma>2} +1,10
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Fig 2.The diagrame of the power spectral density of response S (@) [rad”-s]
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Fig 3. The diagrame of the power spectral density of response S (@) [rad”-s]

3. REMARKS

We observ that the maximum value of 0,03 rad”-s are obtained for values of the frequency
of 5 Hz although , in the frequency band of values untill 2 Hz the spectral power density is

almost costant 0,0021 rad?-s. The fast lowering in the interval (5;6,25) Hz.as you can see in
the graf below in the frequency band (6,5;8,5) in which the spectral density is low untill

0,0004 rad*-swe can see the density is constant for 0,00082 rad”-s for frequencies in the
interval (7,1;7,5) Hz.
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