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ABSTRACT-In this article, we are analyzing a differential equation with random variable. 
Our new technique based on the combination of the transformation method with equivalent 
linearization theory and minimizing the expectation of the square error to evaluate the 
probability density function and the power spectral density of the solution. The accuracy of 
the procedure depends on the bandwidth of the excitation and of the way to decompose the 
nonlinear restoring force in one linear component plus a nonlinear component. Exact 
solutions for a non-linear system under random excitation are rare. It is known that even 
under ideal white noise excitation, only for certain types of non-linear systems, the exact 
probability density function of the response in the steady state can be obtained [1]. Usually 
the power spectral density of the input is non-white and the probability density function is 
taken to be Gaussian to seek an approximate solution through equivalent linearization 
techniques [2]. 
 
1. SYSTEM MODEL 
 
Consider the following oscillator with a nonlinear restoring force component. The ordinary 
differential equation of the motion can be written as: 

 
.. .
( ) ( ) ( ( )) ( )m t c t g t F tη η η+ + = ,  (1)

where m is the mass, c is the viscous damping coefficient, F(t) is the external excitation signal 
with zero mean and ( )tη  is the displacement response of the system. Assuming stationary 
Gaussian white noise excitation, statistics of the stationary response can be obtained using the 
Fokker-Planck equation [3]. 
Dividing the equation by m , the equation of motion can be rewritten as: 

.. .
( ) 2 ( ) ( ( )) ( )t p t h t f tη ξ η η+ + = , (2)

where f(t) is a zero mean stationary Gaussian white noise excitation, i.e. a power spectral 

density '
0 2

FSS
m

= =1.  

We can always find a way to decompose the nonlinear restoring force to one linear 
component plus a nonlinear component 

2 1( ) ( ( ))h p Gη η η
β

= + , (3)
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where β  is the nonlinear factor to control the type and degree of nonlinearity in the system. 
We consider in this article the nonlinear factor ( )G η  of hyperbolical form 

( )( ( )) ( )G t sh tη βη= . The equation of motion, in this case, can be rewritten as: 

( ) ( ) ( ) ( )2 212 ( ) ( )t p t p t p sh t f tη ξ η η βη
β

+ + + =&& & , (4)

where f(t) is a zero mean stationary Gaussian white noise excitation, with the power spectral 

density '
0 2

FSS
m

= =1,
2

c
pm

ξ = ,
( ) ( )

( ( )
2

t te esh t
βη βη

βη
−−

= . 

Obtain 
.. .

2( ) 2 ( ) ( ) ( ),e e et p t p t w tη ξ η η+ + =  (5)

where ep  is the undamped natural frequency and eξ  is the critical damping factor. For the 
linear system 

                                               e
e

p
p

ξ ξ= . (6)

The difference between the nonlinear stiffness and linear stiffness terms is 

                         ( )2 21[ ( ) ( ) ] ( )ee p t sh t p tη βη η
β

= + − . (7)

The value of ep  can be obtained by minimizing the expectation of the square error 

                                             
2

2

{ } 0
e

dE e
dp

= . (8)

Because 

                      2 2 2{ ( )} ( ) ( ( ))E t t P t dηη σ η η η
∞

−∞

= = ∫ , (9)

obtain for ep  

                 

( ) ( )

2 2
2

{ ( ) }
21

t t

e

e eE t
p p

βη βη

η

η
α

σ

−⎛ ⎞−
⎜ ⎟

= +⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. (10)

The forward Fokker Planck equation [6, 9] which governs the transitional probability density 
function P of system (4) is obtained as follows 

     ( )
2

2 '
0 2

12 [ ( ) ( ) ] .P P Pp P p t sh t P S
t

η ξ η η βη π
η η β η

⎡ ⎤∂ ∂ ∂ ∂
+ = + + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
& &

& &
 (11)

We can write 

         ( )
' '

2 0 01[ ( ) ( ) ] 2 0,
2 2

S SP Pp t sh t P p P
p p

π πη βη ξ η
η β ξ η η η ξ η
⎡ ⎤ ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + + − + =⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎣ ⎦
&

& & &
 (12)

from where result 

( )
'

2 01[ ( ) ( ) ] 0
2

S Pp t sh t P
p

πη βη
β ξ η

∂
+ + =

∂
, (13)

'
0 0

2
S PP

p
πη
ξ η

∂
+ =

∂
&

&
. (14)
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The density function of the sistem is 

( ) ( )2
1 '

0 0

2 1exp [ ]pP C p u sh u du
S

ηξη β
π β

⎛ ⎞−
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ , (15)

2.
.

2 '
0

2( ) exp
2

pP C
S
ξ ηη

π

⎧ ⎫
−⎪ ⎪= ⎨ ⎬

⎪ ⎪⎩ ⎭

, (16)

where 1C  and 2C  are normalisation constants. 
We know this 

2ae d
a

η πη
∞

−

−∞

=∫ , ( ) 1P dη η
∞

−∞
=∫ . (17)

We obtain a solution for the stationary joint probability density function P as 
32 2

' '
0 0 0

2 1 2[ ( )]

1 1( ) e
p pp u sh u du

S SP C C e

η
ξ ξβ ηβπ πη

−
+ −∫

= = , (18)

where the constant of normalises is  

1 '
0

2p pC
S
ξ

π
= . (19)
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Fig. 1. The probability density 1( ) [ ]P mη −  for 1 21 , 6 , 0,33, 1 .Fm kg p s S N sξ−= = = = ⋅  
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Fig. 2. The probability density 1( ) [ ]P mη −  for 1 21 , 8 , 0,08, 1 .Fm kg p s S N sξ−= = = = ⋅  
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We calculate the operator
( ) ( )

{ ( ) }
2

t te eE t
βη βη

η
−− . We have 

3 3
2 2

' '
0 0

2 2( ) ( )

'
0

2{ ( ) } .
2 2

p pt t
S Se e p pE t e d e d

S

ξ ξβη βη βη η βη η
π πξη η η η η

π

∞ ∞− − − −

−∞ −∞

⎡ ⎤− ⎢ ⎥= −
⎢ ⎥⎣ ⎦
∫ ∫  (20)

We know this 

                               
2

2( ) 4
3

1
2

b
a b ae d be

a
η η πη η

∞
− +

−∞

=−∫   (21)

Obtain 
2

0
3

'( ) ( )
80

3{ ( ) } .
2 4

St t
pSe eE t e

p

π ββη βη
ξπ βη

ξ

−−
=  (22)

The standard deviation of ( )tη  is 

( )
3

2
'
0

2
2 2 2

'
0

2 .
p

Sp pP d e d
S

ξ η
π

η
ξσ η η η η η

π

∞ ∞ −

−∞ −∞

= =∫ ∫  (23)

We know this 

                                   
22

3

1 .
2

ae d
a

η πη η
∞

−

−∞

=∫  (24)

Obtain 

                                           
'

2 0
3 .

4
S
pη

πσ
ξ

=  (25)

The expression of ep  can be obtained as 
' 2
0

32 2 81
S

p
ep p e

π β
ξ

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

. (26)

Using the Fourier transform of equation [4,5] we obtain 
2 2( )( 2 ) ( )e e ep p i Fη ω ω ξ ω ω

− −

− + = , (27)

where F
.

( ( )) ( )t iη ωη ω
−

= , F ( ( )) ( )F t F ω
−

= . 
The frequency response function [4,5] of the system is given by equation 

2 2 2 21 ( 2 )
( ) e ek m c i m p p i

H
ω ω ω ξ ω

ω
= − + = − + , (28)

( ) ( ) ( )F Hη ω ω ω
− −

= . (29)

The power spectral density of response is 
2( ) ( ) ( )FS H Sη ω ω ω= , (30)

or 
'
0

2 2 2 2 2 2 2 2 2 2 2 2 2
( )

( ) 4 ( ) 4
F

e e e e e e

S SS
m p p m p pη ω

ω ξ ω ω ξ ω
= =

⎡ ⎤ ⎡ ⎤− + − +⎣ ⎦ ⎣ ⎦
. (31)

We obtain for the power spectral density of response [6,7,8] 
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( )

( ){ }
( )

' 2
0

3

2
'
0 0

2 2

2 2

2 2 2 2 28
2

2 2 2 2 2

2 1( )
2

1
0

.

1 4
4

F F

S
p

p p u G u du
S

S S
m mS

p e p
p E G

p p

C e d

η

η
π β
ξ

ξ
βπ

ω

ω ξ ω
η η

ω ξ ω

β η η
−∞ +

= =
⎛ ⎞ ⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎥⎜ ⎟+ − +
⎜ ⎟ ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦+ − +⎜ ⎟
⎜ ⎟∫
⎜ ⎟⎜ ⎟
⎝ ⎠

∫

 

(32)

The power interspectral density of response [5,6] is given by equation 

      
'
0

2 2( ) ( ) ( )
2F F

e

mSS H S
p p iη ω ω ω

ω ξ ω
= =

− +
. (33)

We obtain 

   
' 2
0

3

'
0

2 28

( )

1 2
F S

p

SS

p e p i
η π β

ξ

ω

ω ξ ω

=
⎛ ⎞
⎜ ⎟+ − +
⎜ ⎟
⎝ ⎠

. 
(34)

The power interspectral density by the coincidence [8,9] is 
 
 
 

           

( ){ }
( )

( ){ }
( )

' 2
0

3'
0 0

' 2
0

3

'
0 0

2
' 2 2
0 2

' 2 282 0
1

0
2

2 28
2

2 2 2 2 2

2

2
1

0

1

( )

1
4

Sp h u du pS

Fr
S

p

p h u du
S

p E G
mS p

mS p eC e d
S

p e
p E G

p p

C e d

η

η

π βξ
ξπ

η
π β
ξ

ξ
π

η η
ω

ωβ η η
ω

ω
η η

ω ξ ω

β η η

−∞

−∞

⎛ ⎞
⎜ ⎟
⎜ ⎟

+ −⎜ ⎟ ⎡ ⎤⎛ ⎞⎜ ⎟∫ ⎢ ⎥⎜ ⎟+ −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎣ ⎦= =
⎛ ⎞ ⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎜ ⎟+ −
⎜ ⎟ ⎢ ⎜ ⎟

⎝ ⎠⎣ ⎦+ − +⎜ ⎟
⎜ ⎟∫
⎜ ⎟⎜ ⎟
⎝ ⎠

∫

∫

2

2 2 2

.

4 pξ ω⎥ +
⎥

(35)

The power interspectral density by the quadrature [8,9] is 
            

( ){ }
( )

' 2
0

3

'
0 0

' '
0 0

2 2

2 2 2 2 28
2

2 2 2 2 2

2

2
1

0

2 2( ) .

1 4
4

Fc
S

p

p h u du
S

p mS p mSS

p e p
p E G

p p

C e d

η

η
π β
ξ

ξ
π

ξ ω ξ ωω

ω ξ ω
η η

ω ξ ω

β η η
−∞

− −
= =
⎛ ⎞ ⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎥⎜ ⎟+ − +
⎜ ⎟ ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦+ − +⎜ ⎟
⎜ ⎟∫
⎜ ⎟⎜ ⎟
⎝ ⎠

∫

 

(36)

 
2. THE NUMERICAL RESULTS 
 

For 1m kg= , 36 Nk
m

= , 4 Nsc
m

= , 17sβ −= , with 21FS N s= ⋅ , we will find the statistical 

parameters of function. We obtain  
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16 ,kp s
m

−= = 2 0,33c p
m

ξ ξ= ⇒ = , (37)

 
'

2 20
3 0,0109

4
S m
pη

πσ
ξ

= = .(for
2

'
0 31 mS

s
= ), (38)

 
' 2
0

32 2 281 82,8
S

p
ep p e s

π β
ξ −

⎛ ⎞
⎜ ⎟= + =
⎜ ⎟
⎝ ⎠

⇒ 19,09ep s−= . (39)

The interspectral density of response is 

' 2
0

3

'
0

2

2 28

1( ) .
82,8 3,96

1 2
F S

p

mSS
i

p e p i
η π β

ξ

ω
ω ω

ω ξ ω

= =
− +⎛ ⎞

⎜ ⎟+ − +
⎜ ⎟
⎝ ⎠

 
(40)

The power interspectral density by the coincidence respectively the power interspectral 
density by the quadrature are given by the equations 

' 2
0

3

' 2
0

3

2 28

2
'
02 2 2 2

2 2 2 2 28

1
82,8( ) ,

(82,8 ) 15,68
1 4

S
p

fr
S

p

p e

S mS

p e p

π β
ξ

η
π β
ξ

ω
ωω

ω ω
ω ξ ω

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟ −⎝ ⎠= =

− +⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 (41)

'

' 2
0

3

02 2 2 2

2 2 2 2 28

2 3,96( ) .
(82,8 ) 15,68

1 4

fc
S

p

pS mS

p e p

η
π β
ξ

ξ ω ωω
ω ω

ω ξ ω

=− =−
− +⎡ ⎤⎛ ⎞

⎢ ⎥⎜ ⎟+ − +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 
(42)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
 

η  [m] 
Fig.3. The probability density 1( ) [ ]P mη −  for 16 , 0,33.p s ξ−= =  
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3. CONCLUSIONS 
 
The stationary probability densities obtained for Duffing van der Pol oscillator under both 
external and parametric random excitations by using the linearization procedure are well 
verified by the results from simulation of original equation of motion. In this context, a 
system widely studied has been the nonlinear oscillators under white noise excitation. The 
availability of an exact solution for this system under white noise excitation helps one to 
understand the limitations of approximate methods. Apart from results on the stationary 
probability density function, one would be interested in the response power spectral density 
function. In linear problems, the power spectral density is easily found as the product of the 
input power spectral density and the system frequency response function, for any arbitrary 
input probability density function. Such a facility is not available with the simplest non-linear 
system. This method is restricted to wideband excitations and lightly damped systems, such 
that the response can be taken to be a narrow band process. No general method is available at 
present to obtain the response probability density function and the power spectral density of a 
non-linear system under a given arbitrary Gaussian random input. Detailed numerical results 
are presented for of nonlinear oscillators under white noise excitation. The exact probability 
structure of this special input is found. However, the condition derived is only sufficient, and 
hence the solution presented is not unique. 
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