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ABSTRACT - The method of equivalent linearization is applied to the general problem of the 
response of non-linear discrete systems to non-stationary random excitation. Conditions for 
minimum equation difference are determined which do not depend explicitly on time but only 
on the instantaneous statistics of the response process. Using the equivalent linear parameters, 
a deterministic non-linear ordinary differential equation for the covariance function is derived. 
The theoretical analyses are verified by numerical results. An example is given of a damped 
Duffing oscillator subjected to modulated white noise. 
 
1. SYSTEM MODEL 
 
To illustrate the procedure of equivalent linearization theory, let us consider the following 
oscillator with a nonlinear restoring force component. The ordinary differential equation of 
the motion can be written as: 

.. .
3( ) ( ) ( ) ( ) ( )m t c t k t k t F tη η η α η+ + + =                      (1) 

where m is the mass, c is the viscous damping coefficient, F(t) is the external excitation signal 
with zero mean and ( )tη  is the displacement response of the system. 
The reduced equation is 

.. .
2 2 3( ) 2 ( ) ( ) ( ) ( )t p t p t p t f tη ξ η η αη+ + + =                   (2) 

whereξ is the critical damping factor, and p is the undamped natural frequency, for the linear 
system. 
As a next let us consider excitation described by subsequent correlation function 

( ) cosFR De λττ βτ−= ,                             (3) 
 

where parameters D>0, >0, 0.λ β ≥  
Power spectral density function [1] of excitation we obtain from the relation: 

1( ) ( )
2F FS R dω τ τ
π

∞

−∞
= ∫                            (4) 

By substitution of the (3) in the (4) and integration we obtain 
2 2 2

22 2 2
( )

( ) 2 ( )
F

DS
i i

λ ω λ βω
π ω λ ω λ β

+ +
=

+ + +
                     (5) 

 
or 
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( )
2 2 2

22 2 2 2 2
( )

4
F

DS λ ω λ βω
π λ β ω λ ω

+ +
=

+ − +
.                    (6) 
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Fig. 1. The power spectral density 2[ ]FS N s⋅  of excitation for 
2 1 150 , 1 , 3 .D N s sλ β− −= = =  
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Fig. 2. The power spectral density 2[ ]FS N s⋅  of excitation for 
2 1 150 , 1 , 6,5 .D N s sλ β− −= = =  

Power spectral density function of output we can obtain from the relation 

          
2

2 2 2 2 2 2

( ) /( )
( ) 4

F

e

S mS
p pη

ωω
ω ξ ω

=
− +

.                                               (7) 

So we obtain 

{ } ( )
2 2 2

2 22 2 2 2 2 2 2 2 2 2 2 2 2

( )( )
3 4 4

DS
m p p p

η

η

λ ω λ βω
π ω α σ ξ ω λ β ω λ ω

+ +
=

⎡ ⎤⎡ ⎤− + + + − +⎣ ⎦ ⎢ ⎥⎣ ⎦

.           (8) 
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The displacement variance [2] of the single-degree of freedom system under Gaussian white 
noise excitation can be expressed as, 

2 (0) ( )R S dη η
η

σ ω ω
∞

−∞
= =∫ .                           (9) 

Substitution of the (8) in the (9) and obtain 

{ } ( )
2 2 2

2
2 22 2 2 2 2 2 2 2 2 2 2 2

( )

3 4 4

D d
m p p pη

η

λ ω λ βσ ω
π ω α σ ξ ω λ β ω λ ω

∞

−∞

+ +
=

⎡ ⎤⎡ ⎤− + + + − +⎣ ⎦ ⎢ ⎥⎣ ⎦
∫ .      (10) 

Integration [3,4] obtain 
2

1 1 2 3
2 2 2 32 2

0 1 2 3 1 31 0

( )
( )( ) 2 ( ) ( ) ( )

o

o

b h h h hd d
b h h h b h d hi i d i b i b

πω ω
ω λ ω ω ω

∞

−∞

+ −+
=

− −+ + + +
∫ ,        (11) 

where 
 1 1 2 0 1 3 0 12 , 2 , 2h b h b b d h b dbλ λ λ= + = + + = + .                (12) 

In this case 

                                
2 2 2 2 2 2

1 2 3
2 2 2

0 1

2( ), 4 , 2 2 ( )

(1 3 ), 2 .
e e

e

h p h p p h p p

b p p b pη

ξ λ λξ λ β λ ξ λ β

ασ ξ

= + = + + + = + +

= = + =
             (13) 

2 A
Bη

σ = ,                                 (14) 

where 

  
2 2 2 2

2 2 2 2 2

[12 ( ) 6 ] {2 ( )

8 ( ) 2( )( ) 2 2 ( )}

A D p p p D p p

p p p p p
ηλσ α ξ λ αλ λ ξ λ

λξ ξ λ ξ λ λ β λ ξ λ β

= + − + + +

+ + + + + − − +
          (15) 

{

6 3 7 4 4 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 3 2 3

2 2 2 2 2 2 4 2 2 5

108 36 { [ 4 ( )]( )

2 ( ) [ 4 ( )][ ( )] [2

( ) ( ) ( )] } 12 { ( )[

( )][ 4 ( )] ( )

B m p p m p p p

p p p p p p

p p p m p p p

p p p p

η η

η

σ λξα σ α λα λξ λ β ξ λ

ξ λ λξ λ β λ ξ λ β α λ

ξλ λ β ξ λ λ β λα σ α ξ λ λ

ξ λ β λξ λ β ξ α λ β ξ λ

= + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + − + −

}

2

2 2 6 4 2 2 2 4 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 3 2 2 2

2 2 2 4 2 2

(
) ( ) ( )} { [ 4 ( )]( )

2 ( ) [ 4 ( )][ ( )] [2

( ) ( ) ( )]} 4 ( )[ ( )][

4 ( )] 4 ( ) 4

p p p p p p p
p p p p p p

p p p m p p p

p p m

α λ

β λ α α ξ λ λ β λα λξ λ β ξ λ

ξ λ λξ λ β λ ξ λ β α λ

ξλ λ β ξ λ λ β ξ λ λ ξ λ β

λξ λ β ξ λ β ξ

+

+ − − + + + + + + + +

+ + + + + + + + +

+ + + + + + + + + +

+ + + − + − 5 2 2 2 6

4 2 2 2

( ) 4
4 ( ) ( ).

p m mp
p m p

λ λ β λ

ξ λ λ β

+ − −

− + +

      (16) 

Using the notation 
                                   3 7108l m pλξα=                               (17) 

    
4 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 3

36 { [ 4 ( )]( ) 2 ( ) [ 4 (
)][ ( )] [2 ( ) ( ) ( )] }

n p m p p p p p p p
p p p p p

α λα λξ λ β ξ λ ξ λ λξ λ

β λ ξ λ β α λ ξλ λ β ξ λ λ β λα

= + + + + + + + + +

+ + + + + + + + + +
   (18) 
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{ 3 2 2 2 2 2 2 4 2 2

5 2 2 2 6 4 2 2 2 4 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2

12 { ( )[ ( )][ 4 ( )] ( )

( ) ( ) ( )} { [ 4 (
)]( ) 2 ( ) [ 4 ( )][ ( )] [2

( ) ( ) (

r m p p p p p p

p p p p p p p
p p p p p p p

p p

α ξ λ λ ξ λ β λξ λ β ξ α λ β

ξ λα λ β λ α α ξ λ λ β λα λξ λ

β ξ λ ξ λ λξ λ β λ ξ λ β α λ

ξλ λ β ξ λ λ β

= + + + + + + − + −

− + − − + + + + + +

+ + + + + + + + + + +

+ + + + + }2)]}

  (19) 

{
}

3 2 2 2 2 2 2 4 2 2

5 2 2 2 6 4 2 2 2 2 2

4 ( )[ ( )][ 4 ( )] 4 ( )

4 ( ) 4 4 ( ) ( ) [12 ( ) 6 ]

s p m p p p p p

p p p p D p p p

ξ λ λ ξ λ β λξ λ β ξ λ β

ξ λ λ β λ ξ λ λ β λ α ξ λ αλ

= + + + + + + − + −

− + − − + + − + −
 (20) 

2 2 2 2 2 2{2 ( ) 8 ( ) 2( )( ) 2 2 ( )}q D p p p p p p pλ ξ λ λξ ξ λ ξ λ λ β λ ξ λ β=− + − + − + + + + +       (21) 
obtain the equation 

  8 6 4 2 0l n r s qη η η ησ σ σ σ+ + + + = .                     (22) 
We can always find a way to decompose the nonlinear restoring force to one linear 
component plus a nonlinear component 

2( ) ( ( ) )h p Gη η η α= + ,                           (23) 
where α  is the nonlinear factor to control the type and degree of nonlinearity in the system. 
The idea of linearization is replacing the equation by a linear system: 

.. .
2( ) 2 ( ) ( ) ( ),e e et p t p t f tη ξ η η+ + =                       (24) 

where 

.e
e

p
p

ξ ξ=                                  (25) 

is the damping ratio of equivalent linearized system and ep is the natural frequency of the 
equivalent linearized system. 
To find an expression for ep , it is necessary to minimize the expected value of the difference 
between equations (2) and (24) in a least square sense. Now the difference is the difference 
between the nonlinear stiffness and linear stiffness terms , which is 

2( ( )) ( )ee h t p tη η= − .                            (26) 
The value of ep can be obtained by minimizing the expectation , of the square error:     

2

2

{ } 0
e

dE e
dp

= .                                                        (27) 

Substituting the equation (26) into equation (27) performing the necessary differentiation, the 
expression of ep  can be obtained as: 

  2 2 2 2
2

{ ( )}(1 ) (1 3 ).e
E Gp p p η

η

η ηα ασ
σ

= + = + ,                (28) 

where ησ  is the standard deviation of ( )tη . This equation shows how the nonlinear 
component of the stiffness element affects the value of ep . 
 
2. NUMERICAL RESULTS 
 
Consider in this example 

  21 , 36 , 4 , 3 .N Nsm kg k c m
m m

α −= = = =                     (29) 

Let us set the subsequent values of excitation parameters 
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   2 1 150 , 1 , 3D N s sλ β− −= = = .                       (30) 
Obtain: 

2

2
3 6 4 4 3 2

214 1620

2692 10 7481,91 10 8354,52 10 3240
η

η
η η η

σ
σ

σ σ σ

+
=

⋅ + ⋅ + ⋅ +
,         (31) 

or 
3 8 4 6 3 4 22692 10 7481,91 10 8354,52 10 1620 214 0

η η η η
σ σ σ σ⋅ + ⋅ + ⋅ + − = ,       (32) 

    2 20,052m
η

σ = .                            (33) 

Substituting the equation (33) into equation (28), obtain 
   2 2 2 1(1 3 ) 7, 26ep p sηασ −= + = .                     (34) 

In literature, very little attention has been paid to the frequency domain characteristics of 
nonlinear, dynamic systems excited by stochastic processes. It will be shown that this 
information can be of great value for the understanding of the system's stochastic behaviour. 
In the figures 1, 2, 3, 4 and 5, the power spectral density of the excitation, 2[ ]FS N s⋅ , is 
plotted for the different parameters , , .D λ β  Figure 6 describes the harmonic peak with the 
same parameter values. 
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Fig. 3. The power spectral density 2[ ]FS N s⋅  of excitation for 
2 1 150 , 1 , 3 ,D N s sλ β− −= = = 21 , 36 , 4 , 3 .N Nsm kg k c m

m m
α −= = = =  
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Fig.4. The power spectral density 2[ ]S m sη ⋅ of response for 

21 , 36 , 4 , 3 .N Nsm kg k c m
m m

α −= = = =  

 
3. CONCLUSIONS 
 
The statistical linearization technique can also tackle a wide variety of problems and also 
provides approximate information on the frequency domain characteristics of the stochastic 
response. In this technique, a linear model, which optimally is the original, nonlinear system 
(in some statistical sense), is constructed. Due to the fact that response statistics of such a 
model can, in general, be evaluated analytically, statistical linearization is computationally 
very efficient. However, it only provides accurate approximation of the response statistics for 
weakly nonlinear systems. In this chapter, it is shown that the statistical linearization 
technique structurally underestimates the variance of the response of the piece-wise linear 
system (even for a moderate nonlinearity). This is dangerous when these estimates are used in 
failure criteria for practical systems. The cause for this underestimation of the variance can be 
found by comparing accurate, simulated frequency domain characteristics with those 
determined using the linear model. 
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