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ABSTRACT - In structural and mechanical engineering, problems involving unpredictable or 
stochastic variables or processes are frequently encountered, and in these cases a probabilistic 
analysis may be most rational way of approaching the problem. In many problems involving 
the dynamical behaviour of mechanical systems, the dominating source of uncertainty or 
unpredictability is the excitation. If the excitation is given in terms of a stochastic process, the 
response of the mechanical system is also a stochastic process. In order to assess the 
probability of accurance of extreme events and evaluate possible fatigue damage in the 
structure, it is necessary to be able to evaluate the response statistics with reasonable 
accuracy. In this article the stationary density of the response and the power spectral density 
of the response is addressed. 
 
1. SYSTEM MODEL 
 
A system with a relatively simple non-linear behaviour is an oscillator with linear stiffness 
and power law viscous damping. If an oscillator of this type is excited by additive white noise 
the equation of motion can be expressed as 

( ) ( )2( ) ( ) ( ) ( )x t h x t x t p x t w t+ + =&& & & ,                                            (1)

where ( )x t is the displacement and a lot indicates the derivative with respect to time. The set 
of conditions that guarantees the existence of the Fourier transform are the Dirichlet 
conditions, which may be expressed as: the signal ( )x t  has a finite number of finite 
discontinuities, the signal ( )x t contains a finite number of maxima and minima and it is 
absolutely integrable, that is  

( )x t dt
∞

−∞

< ∞∫ .                                                         (2)

The second term on the left hand side of of the equation represents the forces due to damping 
and ( )( )h x t&  is termed the damping function. The right hand side of the equation is the 
external white noise excitation for the intensity 0S  

1 1. .
( )h x c x

λ −

= .                                                         (3)
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The equation process is then multiplied by 
2
0

0

t
x

, whereby the following non-dimensional 

equation of motion is obtained 

( ) ( )f Uη η η η τ+ + =&& & & ,                                                  (4)

where ( )τU  is a unit white noise with intensity 
π2
1 . The non-dimensional time τ , 

displacement η  and velocity η&  are given by 

0

t
t

τ = ,
0x

x
=η ,

τ
ηη

d
d

=& .                                                   (5)

A dot used in connection with η  this indicates the derivative with respect to τ . The non-
dimensional damping function is given by 

( ) 1
2f λη η λ η=& & & ,                                                         (6)

where 2λ  is a non-dimensional damping coefficient 

1 1
2

0
2

2 Sc
p p

λ

πλ

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.                                                      (7)

The equation of motion is seen only to depend on the parameters 1λ  and 2λ  in this form. In 
the method of equivalent non-linearization, Caughey [1], an equivalent non-linear system is 
introduced as 

( ) ( ) ( ) ( ) ( )e mf E Uη τ η τ η τ τ+ + =&& & , 2 21 1
2 2mE η η= +& ,                       (8)

where mE  is the mechanical energy non-dimensional. ( )e mf E  is a non-dimensional 
equivalent damping function, which is assumed to be function of  the mechanical energy only.  
The difference between the nonlinear stiffness and linear stiffness terms is 

( ) ( )e mf f Eε η η η= −& & & .                                                  (9)

We obtain 

2 2 2 2 2 2| | 2 | |m m e m e mE E E E f E f E f E f Eε η η η⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦& & & .                   (10)

The value of ( )e mf E can be obtained by minimizing the expectation of the square error 

2 | 0mE Eε⎡ ⎤=⎣ ⎦ .                                                        (11)

The equivalent damping function is evaluated by 
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( )
( ) 2

2

|

|
m

e m
m

E f E
f E

E E

η η

η

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

& &

&
,                                            (12)

where [ ]E  is the mean value for a given level. 
The equivalent damping function [2,3] is now evaluated considering the harmonic motion 
given by 

( )

1

1

2 1.

2 1
0 2

2 2.

0

1
2

1
2

e m m

d
f E aE

d

π λ

λ

π

λ η τ
π

η τ
π

+

−

= =
∫

∫
,                                       (13)

where 

1 1 1
2

2

1

1
2 2

3
2 2

a

λ λ
λ

λπ

+ ⎛ ⎞Γ +⎜ ⎟
⎝ ⎠=
⎛ ⎞Γ +⎜ ⎟
⎝ ⎠

                                                  (14)

and ( ).Γ  is Gamma function. 
Using by 

2 sinmEη τ= ,                                                      (15)

the equation of motion (8) is 

( ) ( )2 sin 2 cos 2 sinm e m m mE f E E E Uτ τ τ τ− + + = .                     (16)

The equation Fokker-Planck-Kolmogorov [2,4] are 

( ) 0 0m

m

E
e m E

m m

dPd f E P S
dE dE

η π η
⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

& & ,                                      (17)

where 
mEP  is the probability density of the system. 

Obtain for the density function 

( )
( )

0

Em

e
o

m

f u du

S
E mP E Ce π

−
∫

= ,                                                  (18)

where C is a constant which normalises the density function. 
Substituting the equation (13) and (14.) into equation (18) obtain 
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( )
( )

11
12 12 1

2

1
1 0

2 2 1
2

31
2 2

m

m

E
S

E mP E Ce

λ

λ
λλ

λπ π λ

+

+
⎛ ⎞Γ +⎜ ⎟
⎝ ⎠−
⎛ ⎞+ Γ +⎜ ⎟
⎝ ⎠= .                                    (19)

The power spectral density of response is [2,5] 

( ) ( ) ( )
0

|
mm E m mS r S r E P E dEη η

∞

=∫ ,                                         (20)

where 

( ) ( )
( ) ( )

22 2 2

1|
1

e m m
m

e m

f E E
S r E

r f E r
η π

=
− +

, r
p
ω

= .                           (21)

Substituting the equation (19) and (21) into equation (20), we obtain for the power spectral 
density of response 

( ) ( )
( )

( ) ( )

11
12 12 1

2

1
0 1

2 2 1
2

31
2 2

22 2 2
0 1

mE
S

e m m
m

e m

f E E eCS r dE
r f E r

λ

λ
λλ

λπ π λ

η π

+

+
⎛ ⎞Γ +⎜ ⎟
⎝ ⎠−
⎛ ⎞+ Γ +⎜ ⎟∞ ⎝ ⎠

=
− +

∫ .                          (22)

Following the equation (19) and (22), we have 

( )
( )

( )

11
12 12 1

2

111 0 1

1

2 2 1
2

311 1 1
2 222

2
2 12 2 2

1 0

1
2 2

3 1
2 2

mE
S

m
m

m

E eCS r dE
r a E r

λ

λ
λλ

λλλ π π λ

η λ

λ
λ

λπ π

+

+
⎛ ⎞Γ +⎜ ⎟
⎝ ⎠−
⎛ ⎞++ + Γ +⎜ ⎟∞ ⎝ ⎠

−

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠=
⎛ ⎞ − +Γ +⎜ ⎟
⎝ ⎠

∫ .                (23)

2. EXAMPLE: THE RANDOM DUFFING OSCILLATOR 
 
For convenience, the Duffing oscillator has been used to illustrate this procedure here. 
Consider the Duffing equation of motion 

( )3
2 Uη λ η η τ+ + =&& & ,                                                   (24)

with parameter 1000m kg= , 36000 Nk
m

= , 2400 Nsc
m

= , 1 3λ = . 

Obtain 
1 1
2

0
2

2 Sc
p p

λ

πλ

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=0,066 and for the undamped natural frequency 
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16kp s
m

−= = .                                                     (25)

The equivalent linear systems with random coefficients [4] is written as 

( ) ( ) ( ) ( )maE Uη τ η τ η τ τ+ + =&& & ,                                        (26)

where 2 21 1
2 2mE η η= +&  is the mechanical energy non-dimensional and 

1 1 1 1 1
2

2

1 1 1

1
2 2 2 20,066 0,092.

3 1 1
2 2 2 2 2 2

a

λ λ λ λ
λ

λ λ λπ

+ ⎛ ⎞ ⎛ ⎞Γ + Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ + + Γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                    (27)

The forward Fokker Planck equation [6, 9] which governs the transitional probability density 
function 

mEP  of system (4) is obtained as follows 

0 0m

m

E
E

m

dPd aE P S
dE dE

η π η
⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

& & .                                          (28)

We obtain a solution for the stationary joint probability density function 
mEP  as 

( ) 0

Em

m m
o

m

aE dE

S
E mP E Ce π

−
∫

= ,                                                 (29)

where C  is normalisation constants. 
We obtain 

( )
2

02
m

m

aE
S

E mP E Ce π
−

= .                                                   (30)

We obtain a solution for the stationary joint probability density function 
mEP  as 

( )
2

021
2

m

m

aE
S

E m
o

aP E e
S

π

π

−

= ,                                             (31)

where the constant of normalises is  

1
2 o

aC
Sπ

= .                                                       (32)

For intensity white noise 
π2
1 , we obtain 
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( ) 20,0920,171 m

m

E
E mP E e−= .                                             (33)

The power spectral density of response is 

( ) ( ) ( )
0

|
mm E m mS r S r E P E dEη η

∞

=∫ ,                                    (34)

where 

( )
( )

2

22 2 2 2

1|
1

m
m

m

aES r E
r a E r

η π
=

− +
.                                       (35)

We obtain for the power spectral density of response [4,5] 

( )
( )

2

0

2
2

22 2 2 2 2
0 21

maE
Sm

m
om

Ea aS r e dE
Sr a E r

π
η π

∞ −

=
− +

∫ .                          (36)

3. THE NUMERICAL RESULTS 
 

For 1000m kg=  and white noise intensity 
π2
1  N m

s
⋅ , 2159,2FS N s= ⋅ , we obtain 

( )
( )

2
2

0,0926
22 2 2

0

9,3 10
1 0,0084

mEm
m

m

ES r e dE
r E r

η

∞
−−= ⋅

− +
∫ . 2[ ]m s⋅      .(37)



87 

0
0.0003
0.0006
0.0009
0.0012
0.0015
0.0018
0.0021
0.0024
0.0027
0.003

0.0033
0.0036
0.0039
0.0042
0.0045
0.0048
0.0051
0.0054
0.0057
0.006

0.0063
0.0066
0.0069

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
 

rad/s 

Fig. 1- The power of spectral density 2[ ]S m sη ⋅   
 

We know this 

2
2

20

1 1mqEm
m

m

E ue dE s
uE s s qs q

π∞ − ⎛ ⎞
= + −⎜ ⎟+ ⎝ ⎠

∫ ,                                 (38)

where 

2 2 20,092; 0,0084 ; (1 )q u r s r= = = − .                               (39)

4. CONCLUSION 
 
This method is restricted to wideband excitations and lightly damped systems, such that the 
response can be taken to be a narrow band process. No general method is available at present 
to obtain the response probability density function and the power spectral density of a non-
linear system under a given arbitrary Gaussian random input. Detailed numerical results are 
presented for of nonlinear oscillators under white noise excitation. The exact probability 
structure of this special input is found. However, the condition derived is only sufficient, and 
hence the solution presented is not unique. 
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