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DESIGN OPTIMIZATION OF A GEAR SPEED REDUCER BY WAY OF
MATLAB & ANSYS
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Abstract: The preliminary design optimization of spur geaduetion units has been o subject of
considerable interest, since many high-performapo®er transmission applications requires high-
performance gear reduction units. One of objectivethe optimal design of single-stage spur gear
reduction unit is minimizing the volume. In thigppais used an objective function to formulate the
problem of design optimization of gear speed redacel find an appropriate approach to solve it
using Matlab.
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INTRODUCTION

Typical engineering systems are described by \emyels numbers of variable, and it is the designer
task to specify appropriate values for these vérg@bSkilled designers utilize their knowledge,
experience and judgment to specify these variatesdesign effective engineering systems. Because
of the size and complexity of the typical desigekiahowever, even the most skilled designers are
unable to take into account all of the variablesugianeously.

Design optimization is the application of numerialjorithms and techniques to engineering systems
to assist the designers in improving the systemifopmance, weight, reliability, cost, etc.

Recently, a variety of computer program have beeveldped to solve engineering optimization
program. Many of this are complex and versatile #rel user needs a good understanding of the
algorithms/computer programs to be able to use efématively.

The design of the speed reducer, shown in figs tpnsidered with the face width module of teeth

m, number of teeth on piniogz,, length of shaft 1 between bearinlgs length of shaft 2 between
bearingsl,, diameter of shaft 1, , diameter of shaft 2, ,

Fig. 1. A single stage spur-gear transmission

MATHEMATICAL MODELLING

The bending stress at the root of the tooth isrghwethe following simplified formula



o =const E—lF—t = const[-li (1)
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where

O¢ - bending stress at the root of the tooth

const - combination of all constant or approximately dans occurring in ISO or AGMA
formulae.

F, - tangential load at pitch circle

b- face width

z,- number of teeth on pinion

m- module of gear teeth

T, - input torque at shaft 1.

The contact stress is given by the following, asoplified formula

F +1 2T, +1
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where

const, - combination of all constant or approximately dans factors in the ISO or AGMA
formulae

u- gear ratio(u > 1).

For steels case hardenedH&®C = 60, the permissible bending stressis;,, =500MPa and

the permissible contact stressdg,,,, =1600MPa (according to MAAG).
The maximum linear deflections of the shafts 1 2rade given by relations
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whered,, d, are diameters of input and output shafts 1, resme2.
Allowable linear deflections will depend on manytiars and for this case are considered as form
Yaizo =3, 107 for steel with modulus of elasticiti = 2[10°MPa.

Assuming a solid shafts with round sections, thetflating stresses due to bending and torsion are
given by

®3)
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o = 32Mm,, 16T,
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whereT,, and M, , are the torque, respective bending moment at shaitel 2.

Combining these stresses in accordance with thertis energy failure theory, the von Mises
stresses for rotating shafts, neglecting axialdpade given by
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Since
Ml = 5 E!l = L dl (7)
2 mz 2
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relations (6) can be written as
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In case of use the same material for pinion, shdtgear, the weight of speed reducer is give by
simplified relation

+3u? (10)

W= ’ZT pazi, + 21, +bwez2 - d2)- b2 (uz)? - o2 (11)
where p is the density of material.
In case of use a set of design parameke;s[&,xz,x3,...,x7]T, defined as:xx, =b; x, =m; X, =7;
X, =l X =1,; X =d;; X, =d,, the objective function (minimization of weight speed reducer)
can be written as form
_TT(. 2 2 2,2 2)_ 2,2
f(x)_Z[X6X4+X7X5+X1X2X3(1+U ) Xl(xﬁ +X7)] (12)

The constraints include limitations on the bendsigess of gear teeth, surface stress, transverse
deflections of shafts 1 and 2 due to transmittedefpand stresses in shafts 1 and 2. In concordance
with these limitations, the nonlinear constrains given by relations

const, 2T, 63(u +2)u*® - 1600< 0 (13)
const 2T %2 )~ 500< 0 (14)
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Fig. 2. Optimization plot function by M atlab/Optimization tool

For the following parametersu=3; T, :3270:{Nmn']; consf, =629473; const =9.75, the
optimization problem is solved by tifiminconfunction using Matlab/Optimization tool.



The solution is:
X= [29.57641.957617.000048.941248.941215.583420.7965]

where: b=295764nm; m=19576nm; z =17; |, =689412; |, =689412; d, =155834;
d, =20.7965.
The optimization plot functions bylatlab/optimization toolis indicated in figure 2.

SIMULATION BY ANSYS

A proposal sketch of output shaft is presentedgaré 3 (dash line for simplified shape and sailie |
for real shape)
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Fig. 3. Output shaft of speed reducer

Equivalent stress (also called von Mises stresgften used in design work because it allows any
arbitrary three-dimensional stress state to beesspted as a single positive stress value. Equivale
stress (figure 4) is related to the principal sieﬁal >0, > 03), by the equation

=\/(01_02)2 +(02 _03)2 +(03_01)2 (19)
2
The maximum normal stress (called the princip@ssto; ) and the minimum normal stress (called the

principal stressr, ), given by equations
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The maximum shear streés, ., ) and the minimum shear strefgs,, ) given by equations
2
On—0
Thax = \/(TWJ + Tfy (22)
o, -0, Y
Tyin =~ (%J + Tfy = "Tax (23)
The von Mises or equivalent strain is computed as
e :m\/(gl _52)2 +(52 _‘93)2 +(53 _‘91)2 (24)

where g, €,, & are the principal strainéf1 >g,> 53) andv' is effective Poisson’s ratio.
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Fig. 4. Equivalent stress
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Fig. 5. Safety factor (maximum equivalent stressfailure theory)
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Fig. 6. Maximum shear stress



The maximum equivalent stress failure theory isegally considered as the most appropriate for
ductile materials such as aluminum, brass and.steel

Based on this theory, a particular combination wfigipal stresses causes failure if the maximum
equivalent stress in a structure equals or excasgecific stress limit

0s2 S (25)
Expressing the theory as a design goal
e <1 (26)
and safety factor (figure 5) is defined as
F, = Sm. (27)
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Fig. 7. Safety factor (maximum shear stressfailuretheory)
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Fig. 8. Total defor mation

Based on the maximum shear stress failure theonyaricular combination of principal stresses
causes failure if the maximum shear equals or @scaespecific shear limit

Tmax 2 f |:aim (28)
where the limit strength is generally the yielduttimate strength of the material. The shear stiteng
of the material is defined as a fractiph < 1) of the yield or ultimate strength.



Based on this theory, the safety factor (figures@efined as

F, = Sim (29)
Tmax

Physical deformations are calculated relative t® fixed Cartesian (X, Y, Z) coordinate system
defined for a output-shaft by the CAD system.

Total deformation (figure 8) is
U=,UZ+UZ+U; (30)

whereU,, Uy, U, are the component deformations with respect t¥ Znd Z directions.

CONCLUSIONS

This paper presented a simplified model of optinatulus of a speed reducer with a single
stage of reduction. With the aid of Matlab are deieed optimal dimensions for a simplified
constructive scheme of a speed reducer with minimnght but strong enough to principal
mechanical stresses. Are considered the bendiegssat the root and the contact stress of
teeth, the linear deflections of the shafts andvitre Mises stresses of rotating shafts within
there allowable limits.

By means of ansys are highlighted the von Misesthaahaximum shear stressethe safety
factors (based on th@aximum equivalent stress failure theory respeativehe maximum shear
stress failure theory), total deformation of thdpoi shaft. With same specific modifications, this
optimization model can be extended to other medahsystems
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