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Abstract: The preliminary design optimization of spur gear reduction units has been o subject of 
considerable interest, since many high-performance power transmission applications requires high-
performance gear reduction units. One of objectives in the optimal design of single-stage spur gear 
reduction unit is minimizing the volume. In this paper is used an objective function to formulate the 
problem of design optimization of gear speed reducer and find an appropriate approach to solve it 
using Matlab.      
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INTRODUCTION 
 
Typical engineering systems are described by very larges numbers of variable, and it is the designer 
task to specify appropriate values for these variables. Skilled designers utilize their knowledge, 
experience and judgment to specify these variables and design effective engineering systems. Because 
of the size and complexity of the typical design task, however, even the most skilled designers are 
unable to take into account all of the variables simultaneously.   
Design optimization is the application of numerical algorithms and techniques to engineering systems 
to assist the designers in improving the system’s performance, weight, reliability, cost, etc.       
Recently, a variety of computer program have been developed to solve engineering optimization 
program. Many of this are complex and versatile and the user needs a good understanding of the 
algorithms/computer programs to be able to use them effectively.     
The design of the speed reducer, shown in fig. 1, is considered with the face width b , module of teeth 
m , number of teeth on pinion 1z , length of shaft 1 between bearings 1l , length of shaft 2 between 

bearings 2l , diameter of shaft 1 1d , diameter of shaft 2 2d ,     

 
 
 

 
MATHEMATICAL MODELLING  
 
The bending stress at the root of the tooth is given by the following simplified formula 
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Fig. 1. A single stage spur-gear transmission 
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where 

Fσ - bending stress at the root of the tooth 

Fconst - combination of all constant or approximately constant occurring in ISO or AGMA 
formulae. 

tF - tangential load at pitch circle 
b - face width 

1z - number of teeth on pinion 
m- module of gear teeth 

1T  - input torque at shaft 1. 
The contact stress is given by the following, also simplified formula 
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where 

Hconst - combination of all constant or approximately constant factors in the ISO or AGMA 
formulae 

u - gear ratio ( )1≥u . 

For steels case hardened to 60=HRC , the permissible bending stress is MPap 500=limσ  and 

the permissible contact stress is MPaH 1600=limσ  (according to MAAG).   
The maximum linear deflections of the shafts 1 and 2 are given by relations 
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where 1d , 2d  are diameters of input and output shafts 1, respective 2.  
Allowable linear deflections will depend on many factors and for this case are considered as form 

4
2121 103 −⋅= ,, lyall  for steel with modulus of elasticity MPaE 5102 ⋅= . 

Assuming a solid shafts with round sections, the fluctuating stresses due to bending and torsion are 
given by 
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where 21,T  and 21,M are the torque, respective bending moment at shafts 1 and 2.    

Combining these stresses in accordance with the distortion energy failure theory, the von Mises 
stresses for rotating shafts, neglecting axial loads, are given by 
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Since 
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relations (6) can be written as  
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In case of use the same material for pinion, shat and gear, the weight of speed reducer is give by 
simplified relation 
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where ρ  is the density of material. 

In case of use a set of design parameters [ ]Txxxx 7321 ,...,,,x = , defined as: bx =1 ; mx =2 ; 13 zx = ; 

14 lx = ; 25 lx = ; 16 dx = ; 27 dx = , the objective function (minimization of weight of speed reducer) 
can be written as form 
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The constraints include limitations on the bending stress of gear teeth, surface stress, transverse 
deflections of shafts 1 and 2 due to transmitted force, and stresses in shafts 1 and 2. In concordance 
with these limitations, the nonlinear constraints are given by relations 
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For the following parameters: 3=u ; [ ]NmmT 327031 = ; 473629.=Hconst ; 759.=Fconst , the 
optimization problem is solved by the fmincon function using Matlab/Optimization tool. 

Fig. 2. Optimization plot function by Matlab/Optimization tool 



The solution is:  
[ ]79652058341594124894124800001795761576429 .;.;.;.;.;.;.=x  

where: mmb 576429.= ; mmm 95761.= ; 171 =z ; 9412681 .=l ; 9412682 .=l ; 5834151 .=d ; 

7965202 .=d . 
The optimization plot functions by Matlab/optimization tool  is indicated in figure 2.   
 
SIMULATION BY ANSYS 
 
A proposal sketch of output shaft is presented in figure 3 (dash line for simplified shape and solid line 
for real shape)  

 

 
 
 

Equivalent stress (also called von Mises stress) is often used in design work because it allows any 
arbitrary three-dimensional stress state to be represented as a single positive stress value. Equivalent 
stress (figure 4) is related to the principal stresses ( )321 σσσ >> ,  by the equation 
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The maximum normal stress (called the principal stress 1σ ) and the minimum normal stress (called the 

principal stress 2σ ),  given by equations 
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The maximum shear stress ( )maxτ  and the minimum shear stress ( )minτ  given by equations 
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The von Mises or equivalent strain is computed as 
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where 1ε , 2ε , 3ε  are the principal strains ( )321 εεε >>  and 'υ  is effective Poisson’s ratio. 
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Fig. 3. Output shaft of speed reducer 



 
 
 

 
 
 

 
 

Fig. 4. Equivalent stress 

Fig. 6. Maximum shear stress 

Fig. 5. Safety factor (maximum equivalent stress failure theory) 
 



 
The maximum equivalent stress failure theory is generally considered as the most appropriate for 
ductile materials such as aluminum, brass and steel.  
Based on this theory, a particular combination of principal stresses causes failure if the maximum 
equivalent stress in a structure equals or exceeds a specific stress limit 

limSe ≥σ                                                               (25) 
Expressing the theory as a design goal 
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and safety factor (figure 5) is defined as 
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Based on the maximum shear stress failure theory, a particular combination of principal stresses 
causes failure if the maximum shear equals or exceeds a specific shear limit 

limmax Sf ⋅≥τ                                                          (28) 
where the limit strength is generally the yield or ultimate strength of the material. The shear strength 
of the material is defined as a fraction ( )1<f  of the yield or ultimate strength. 

Fig. 8. Total deformation 

Fig. 7. Safety factor (maximum shear stress failure theory) 



Based on this theory, the safety factor (figure 7) is defined as 
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Physical deformations are calculated relative to the fixed Cartesian (X, Y, Z) coordinate system 
defined for a output-shaft by the CAD system. 
Total deformation (figure 8) is  
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where xU , yU , zU  are the component deformations with respect to X, Y and Z directions. 

 
CONCLUSIONS 
 
This paper presented a simplified model of optimal calculus of a speed reducer with a single 
stage of reduction. With the aid of Matlab are determined optimal dimensions for a simplified 
constructive scheme of a speed reducer with minimum weight but strong enough to principal 
mechanical stresses. Are considered the bending stress at the root and the contact stress of 
teeth, the linear deflections of the shafts and the von Mises stresses of rotating shafts within 
there allowable limits.   
By means of ansys are highlighted the von Mises and the maximum shear stresses, the safety 
factors (based on the maximum equivalent stress failure theory respective on the maximum shear 
stress failure theory), total deformation of the output shaft. With same specific modifications, this 
optimization model can be extended to other mechanical systems 
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