
                                                                                

UNIVERSITY OF PITESTI                                              SCIENTIFIC BULLETIN 
FACULTY OF MECHANICS AND TECHNOLOGY           AUTOMOTIVE series, year XV, no.19, vol. B 

 
  
 

THE OPTIMAL DESIGN OF LINKAGE BASED ON MATLAB 
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Abstract: Optimal problem is often met in engineering practice. As the coupler-link of linkages can 
produce useful motions that are desired in many engineering applications, research on coupler-link 
motion has attracted the attention of various investigators for over a century. The basic theme of this 
paper is the kinematic optimization of six-bar linkage -with the assumption that all the links are rigid- 
for the problem of function generation. The optimization methodology developed here is based upon a 
minimization of the linkage errors defined as the difference between the prescribed coupler-point 
(positions, velocities, accelerations) and the actual ones attained by the linkage.     
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INTRODUCTION 
 
Optimization is the act of obtaining the best result under given circumstances. Optimization can be 
defined as the process of finding the conditions that give the maximum or minimum value of a 
function similar to minimize the effort required or to maximize the desired benefit. The classical 
methods of optimization are useful in finding the optimum solution of continuous and differentiable 
functions. These methods are analytical and make use of the techniques of differential calculus in 
locating the optimum points. Since some of the practical problems involve objective functions that are 
not continuous and/differentiable, the classical optimization techniques have limited scope in practical 
applications. In this paper we present a study of a multivariable function with equality and inequality 
constraints for a planar linkage.  Linkages are an important class of mechanisms. Unlike gear or cam 
mechanisms, linkages transform motion from one rigid body to another through surface contact 
between every pair of adjacent links. All the joints used in construction linkages are lower kinematic 
pairs, i.e., surface-contact couplings between two rigid bodies. Depending on the type of joints a 
linkage contains, it can perform planar or spatial motions.  
 

 
 
 
KINEMATIC ANALYSSIS OF LINKAGE 
 
The considered six-bar planar mechanism is shown in Fig. 1. The driver link is the rigid link 1 and the 
origin of the reference frame is at O. The motion of coupler point D is defined when the position 
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Fig. 1. Planar six-bar mechanism 



vector, velocity and acceleration of this point are defined as function of time with respect to a fixed 
reference frame with the origin at O. 
The coordinates of joint A are expressed in terms of the coordinates of joint 1O  and the relative 
orientation of link 1. Its coordinates are determined using following equations   

111 ϕcoslxx OA +=                                                             (1) 

111 ϕsinlyy OA +=                                                             (2) 
For the joint B on the links 2 and 3 can be writing 

33222 ϕϕ coscos lxlxx OAB +=+=                                             (3) 

33222 ϕϕ sinsin lxlyy OAB +=+=                                              (4) 

where 2ϕ  and 3ϕ  are  the relative orientations of links 2 and 3 with respect to axis ox of the Cartesian 
reference frame Oxy.  
By eliminating 4ϕ combining equation (3) with (4) and summarizing we have 
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or 
022 =++ CBA ϕϕ sincos                                                    (6) 

Where 
( )222 OA xxlA −=                                                               (7) 

( )222 OA yylB −=                                                               (8) 
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With notation  
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equation (6) can be writing as 

( ) 022 =+++− ACBTTAC                                                  (11) 
and is obtained  
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respective 
Tarctan22 =ϕ                                                            (13) 

In the other hand the position of joint C is 
( )αϕ −+= 342 coslxx OC                                                     (14) 

( )αϕ −+= 342 sinlyy OC                                                     (15) 
For the joint D, between the links 6 and 7 can be writing 

elyy CD =−= 55 ϕsin                                                       (16) 
and result 

5
5 l

eyC −= arcsinϕ                                                         (17) 

55 ϕcoslxx CD −=                                                          (18) 
The velocities of coupler points A, B, C and D can be written as form 
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where the angular velocities of links 2, 3 and 5 are forms 
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The angular accelerations of links 2, 3 and 5 are forms                
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The acceleration of  coupler point D is 
( ) ( )[ ] [ ]5

2
55553
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3334 ϕωϕεαϕωαϕε cossincossin ++−+−−= llaD                  (29) 

In the optimization process all equality and inequality constraints and conditions should be considered. 
The first inequality constraints comes from that there is no negative length 

0521 >lll ,...,,                                                           (30) 
respective 

0222 ≥+− ACB                                                       (31) 
 

OPTIMIZATION ALGORITHM 
 
In the synthesis of function generators, the linkage sought is to produce a set of input and output 
variable pair that verifies certain functional relations. Although it is not always possible to find a 
linkage that generates a given set input-output pair exactly, an optimum linkage can always be found 
that produces the given pairs approximately, with a minimum error. Optimization bears more practical 
impact than the conventional synthesis because of its ability to handle unlimited numbers of given 
input-output pairs and meet many design requirements at the same time. Thus, through optimization, 
various design conditions can be satisfied and globally meaningful solutions can be obtained.  
Since the mobility conditions and nonlinear inequality constraints a constrained nonlinear 
optimization method based on fmincon function is proposed to solve this problem. This 
method is very efficient in handling the function-generator synthesis problems, regardless of 
the linkage type, i.e., planar, spherical or spatial. 
Optimization techniques are used to find a set of design parameters, x = {x1,x1,...,xn}, that can 
in some way be defined as optimal. In a simple case this might be the minimization or 
maximization of some system characteristic that is dependent on x. In a more advanced 
formulation the objective function, f(x), to be minimized or maximized 

( )
x
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 might be subject to constraints in the form of equality constraints 
( ) 0=xGi   ( )emi ,...,1=                                                      (33) 

inequality constraints 
( ) 0≤xGi   ( )mmi e ,...,1+=                                                      (34)          

and/or parameter bounds, xl, xu. 
The objective function f(x) returns a scalar value, and the vector function G(x) returns a vector 
of length m containing the values of the equality and inequality constraints evaluated at x.  
Many of the methods used in Matlab/Optimization Toolbox solvers are based on active set algorithm, 
a simple yet powerful concept in optimization. 
In constrained optimization, the general aim is to transform the problem into an easier sub-
problem that can then be solved and used as the basis of an iterative process. A characteristic 
of a large class of early methods is the translation of the constrained problem to a basic 
unconstrained problem by using a penalty function for constraints that are near or beyond the 
constraint boundary. In this way the constrained problem is solved using a sequence of 
parameterized unconstrained optimizations, which in the limit (of the sequence) converge to 
the constrained problem. These methods are now considered relatively inefficient and have 
been replaced by methods that have focused on the solution of the Karush-Kuhn-Tucker 
(KKT) equations. The KKT equations are necessary conditions for optimality for a 
constrained optimization problem. If the problem is a so-called convex programming 
problem, that is, f(x) and Gi(x),  are convex functions, then the KKT equations are both 
necessary and sufficient for a global solution point. 
Referring to (32), the Kuhn-Tucker equations can be stated as 
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( ) 0=∇⋅ *xGiiλ    ( )emi ,...,1=                                                (36) 
0>iλ      ( )mmi e ,...,1+=                                                   (37) 

in addition to the original constraints (33) and (34). 
The equation (35) describes a canceling of the gradients between the objective function and the active 
constraints at the solution point. For the gradients to be canceled, Lagrange multipliers λi are necessary 
to balance the deviations in magnitude of the objective function and constraint gradients. Because only 
active constraints are included in this canceling operation, constraints that are not active must not be 
included in this operation and so are given Lagrange multipliers equal to 0. This is stated implicitly in 
the last two Kuhn-Tucker equations. 
The solution of the KKT equations forms the basis to many nonlinear programming algorithms. These 
algorithms attempt to compute the Lagrange multipliers directly. Constrained quasi-Newton methods 
guarantee super-linear convergence by accumulating second-order information regarding the KKT 
equations using a quasi-Newton updating procedure. These methods are commonly referred to as 
Sequential Quadratic Programming (SQP) methods, since a QP sub-problem is solved at each major 
iteration (also known as Iterative Quadratic Programming, Recursive Quadratic Programming, and 
Constrained Variable Metric methods). 

In this case are used a set of design parameters [ ]Txxxx 11321 ,...,,x = , defined as: 11 Oxx = ; 

12 Oyx = ; 23 Oxx = ; 24 Oyx = ; 15 lx = ; 26 lx = ; 37 lx = ; 48 lx = ; 59 lx = ; ex =10 ; α=11x . 
The objective function is defined as 
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and the constraints (equations 30, 31) can be written as  
05 ≤− x ; 06 ≤− x ; 07 ≤− x ; 08 ≤− x ; 09 ≤− x  
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NUMERICAL EXAMPLE 
 
A design problem is solved here to demonstrate the application of this optimization method. It is 
required to design a planar path generation mechanism to meet the input-output relations shown in 
table 1. 
 

0
1 10=ϕ  0

1 30=ϕ  0
1 60=ϕ  

5=−desiredDx [cm] 3=−desiredDv [cm/s] 7−=−desiredDa [cm/s2] 

 
 
The problem is solved using nonlinear inequality constraints by the fmincon function and obtained the 
solution 

[ ]T022065459634460954245666454163200081621513391333514 .,.,.,.,.,.,.,.,.,.,.x −=  
 The linkage parameters of planar six-bar linkages are defined as:  

[ ]cmxO 335141 .= ; [ ]cmyO 339131 .= ; [ ]cmxO 621512 .= ; [ ]cmyO 00812 .= ; [ ]cml 63201 .= ; 

[ ]cml 645412 .= ; [ ]cml 245663 .= ; [ ]cml 609544 .= ; [ ]cml 963445 .= ; [ ]cme 6545.= ; 

[ ]rad0220.−=α . 
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CONCLUSIONS 
 
In this paper one of the basic problems in linkage kinematics, input-output analysis, is presented. The 
aim of this paper is to establish the basic context of function-generating linkage synthesis problems. 
The basic concepts for path generation are discussed to support the formulations presented in this 
work. The optimization scheme presented above is very efficient in solving the problems of synthesis 
of linkages under mobility constraints. This scheme is demonstrated by minimizing the design error. 
The optimization procedure is illustrated with a numerical example. Optimal synthesis of linkage is, in 
fact, a repeated analysis for a random determined mechanism and finding of the best possible one so 
that it could meet technological requirements, and it is most often used in dimensional synthesis, 
which implies determination of elements of the given mechanism (lengths, angles, coordinates) 

Fig. 2. Optimization plot function by Matlab/Optimization tool 

Table. 1. Desired input-output relations 



necessary for creation of the linkage in the direction of desired motion. With same specific 
modifications, this optimization model can be extended to other mechanical systems. 
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Fig. 3. The optimum coupler-point curves of linkage 
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