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THE OPTIMAL DESIGN OF LINKAGE BASED ON MATLAB
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Abstract: Optimal problemis often met in engineering practice. As the caulidk of linkages can
produce useful motions that are desired in manyiresging applications, research on coupler-link
motion has attracted the attention of various inigagors for over a century. The basic theme of thi
paper is the kinematic optimization of six-bar lgk -with the assumption that all the links arddig

for the problem of function generation. The optatian methodology developed here is based upon a
minimization of the linkage errors defined as th#edence between the prescribed coupler-point
(positions, velocities, accelerations) and the attines attained by the linkage.
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INTRODUCTION

Optimization is the act of obtaining the best result under given circumstances. Optimization can be
defined as the process of finding the conditions that give the maximum or minimum value of a
function similar to minimize the effort required or to maximize the desired benefit. The classical
methods of optimization are useful in finding the optimum solution of continuous and differentiable
functions. These methods are analytical and make use of the techniques of differential calculus in
locating the optimum points. Since some of the practical problems involve objective functions that are
not continuous and/differentiable, the classical optimization techniques have limited scope in practical
applications. In this paper we present a study of a multivariable function with equality and inequality
constraints for a planar linkage. Linkages are an important class of mechanisms. Unlike gear or cam
mechanisms, linkages transform motion from one rigid body to another through surface contact
between every pair of adjacent links. All the joints used in construction linkages are lower kinematic
pairs, i.e., surface-contact couplings between two rigid bodies. Depending on the type of joints a
linkage contains, it can perform planar or spatial motions.

Fig. 1. Planar six-bar mechanism

KINEMATIC ANALYSSISOF LINKAGE

The considered six-bar planar mechanism is shown in Fig. 1. The driver link istherigid link 1 and the
origin of the reference frame is at O. The motion of coupler point D is defined when the position



vector, velocity and acceleration of this point are defined as function of time with respect to a fixed
reference frame with the origin at O.
The coordinates of joint A are expressed in terms of the coordinates of joint O, and the relative

orientation of link 1. Its coordinates are determined using following equations

Xa = Xo1 T1,COS @, @)
Ya = Yo tlising, )
For thejoint B on the links 2 and 3 can be writing
Xg = Xp +1,C08 @, = X5, +1;5C0S P4 ©)
Ye = Ya t1,8ing, =Xy, +13sing, (4)
where ¢, and ¢, are the relative orientations of links 2 and 3 with respect to axis ox of the Cartesian
reference frame Oxy.
By eliminating ¢, combining equation (3) with (4) and summarizing we have
[(XA - on) +1,cos ¢2]2 + [(YA - YOz) +1, Sin(bz]2 =13 ®)
or
Acos ¢, +Bsing,+C =0 (6)
Where
AZZIZ(XA_XOZ) (7
B = 20,(Ya = Yos) (®)
C:(XA_X02)2+(YA_yoz)2+|22_|32 )
With notation
T= tan¢—22 (20)
equation (6) can be writing as
(C-AT2+2BT+C+A=0 (12)
and is obtained
_ 2 _ (2 2
T= BtvB°-C +A (12)
C-A
respective
@, =2arctanT (13)
In the other hand the position of joint Cis
Xc :X02+|4COS(¢3_0') (14
Ye =y02+l4sin(¢3—a) (15)
For the joint D, between the links 6 and 7 can be writing
Yo =Yc ~lssings =e (16)
and result
b = arcsing (17)
5
Xp = X ~l5C0S &s (18)
The velocities of coupler points A, B, C and D can be written asform
[ i K| |-lasing,
Vo= xOA=| O 0 | =l cos g, (29)
Xa=X1 Ya~ Yo O 0
i J K| |-l;aysing,
Vg =y X0,B=| 0 0 ;| = | ;a5 c08 @, (20)
Xg %02 Ys~Yor O 0




i i k| |- laeysin(gs -

Ve =w,xO,C=| 0 0 @y =|l,w,cos(d; - a) (21)
X =%2 Ye~ Yoo O 0
~ 1,y sin(g; - a) +lsaxsingy|  |-1,@sin(gs - a) + s sin g
Vp =Ve+ s xCD =|l,w,cos(g, —a) -l cos g | = 0 (22)
0 0
where the angular velocities of links 2, 3and 5 are forms
_ |1Sin(¢1_¢3)
LUl )) 23
“ wllzs'n(¢3 _¢2) (3)
_hsin(g -4,) _
= : =w 24
“ ailss'n(% _¢2) ’ (@9
_ |4C03(¢3 _a)
7 e Sk vt B 2
“ lscos ¢ (29

The angular accelerations of links 2, 3 and 5 are forms
_ 1 (@ -@)cos(s, - ¢3)sm(¢3 #,) ~ (w, ~ wy)sin(g, - §)cos(¢; - 4,)
£ = al, (26)
(s n(¢3 8,)f
(1 - @ )cos(@, - 4, )sin(g; - 4,) - (@ ~ w)sin(g, - ¢,)cos(gs - ¢,) )

= |l
“ (5, - 4,)F
_ly cos(g,—a)  w,cosgsin(g, —a)-wsing,cos(g, - a)
& lg & cos @, “ (cosg.) (28)
The acceleration of coupler point D is
ap = —I4[.933in(¢3 -a)+ af cos(g, —a)J+ I5[£53in . + af cos ¢5J (29)

In the optimization process all equality and inequality constraints and conditions should be considered.
Thefirst inequality constraints comes from that there is no negative length
I, 15,015 >0 (30)
respective
B?-C%+A?20 (31)

OPTIMIZATION ALGORITHM

In the synthesis of function generators, the linkage sought is to produce a set of input and output
variable pair that verifies certain functional relations. Although it is not always possible to find a
linkage that generates a given set input-output pair exactly, an optimum linkage can always be found
that produces the given pairs approximately, with a minimum error. Optimization bears more practical
impact than the conventional synthesis because of its ability to handle unlimited numbers of given
input-output pairs and meet many design requirements at the same time. Thus, through optimization,
various design conditions can be satisfied and globally meaningful solutions can be obtai ned.
Since the mobility conditions and nonlinear inequality constraints a constrained nonlinear
optimization method based on fmincon function is proposed to solve this problem. This
method is very efficient in handling the function-generator synthesis problems, regardless of
the linkage type, i.e., planar, spherical or spatial.
Optimization techniques are used to find a set of design parameters, x = {X3,X1,...,Xn} , that can
in some way be defined as optimal. In a simple case this might be the minimization or
maximization of some system characteristic that is dependent on x. In a more advanced
formul ation the objective function, f(x), to be minimized or maximized

min f (x) (32)

X



might be subject to constraints in the form of equality constraints
G(x)=0 (i=1..m) (33)

inequality constraints

G(x)<0 (i=m, +1..,m) (34)
and/or parameter bounds, X;, X,.
The objective function f(x) returns a scalar value, and the vector function G(x) returns a vector
of length m containing the values of the equality and inequality constraints evaluated at x.
Many of the methods used in Matlab/Optimization Toolbox solvers are based on active set algorithm,
asimple yet powerful concept in optimization.
In constrained optimization, the genera aim is to transform the problem into an easier sub-
problem that can then be solved and used as the basis of an iterative process. A characteristic
of a large class of early methods is the trandation of the constrained problem to a basic
unconstrained problem by using a penalty function for constraints that are near or beyond the
constraint boundary. In this way the constrained problem is solved using a sequence of
parameterized unconstrained optimizations, which in the limit (of the sequence) converge to
the constrained problem. These methods are now considered relatively inefficient and have
been replaced by methods that have focused on the solution of the Karush-Kuhn-Tucker
(KKT) equations. The KKT equations are necessary conditions for optimality for a
constrained optimization problem. If the problem is a so-called convex programming
problem, that is, f(x) and Gi(x), are convex functions, then the KKT equations are both
necessary and sufficient for a globa solution point.
Referring to (32), the Kuhn-Tucker equations can be stated as

Of (x*)+Zm:Ai MG (x*)=0 (35)
A D]]Gi(x*l)io (i=1...m) (36)
A>0 (i=m+1..,m) (37)

in addition to the original constraints (33) and (34).

The equation (35) describes a canceling of the gradients between the objective function and the active
constraints at the solution point. For the gradients to be canceled, Lagrange multipliers 4; are necessary
to balance the deviations in magnitude of the objective function and constraint gradients. Because only
active constraints are included in this canceling operation, constraints that are not active must not be
included in this operation and so are given Lagrange multipliers equal to 0. Thisis stated implicitly in
the last two Kuhn-Tucker equations.

The solution of the KKT equations forms the basis to many nonlinear programming algorithms. These
algorithms attempt to compute the Lagrange multipliers directly. Constrained quasi-Newton methods
guarantee super-linear convergence by accumulating second-order information regarding the KKT
eguations using a quasi-Newton updating procedure. These methods are commonly referred to as
Sequential Quadratic Programming (SQP) methods, since a QP sub-problem is solved at each major
iteration (also known as Iterative Quadratic Programming, Recursive Quadratic Programming, and
Constrained Variable Metric methods).

In this case are used a set of design parameters x =[x, %,,%,,...x,]" , defined as: x = xg,;
Xo = Yors X3 = X023 X4 = Yozs X =lis X =15 % =135 X =15 X% =155 X0 =€; X, =a.
The objective function is defined as
f(X) = (XD - XD—desired)2 + (VD _VD—desired)
and the constraints (equations 30, 31) can be written as
X% <0; —-%<0; -%<0; - %<0; -X%<0

2 2

+ (aD - aD—desired)

- [2X6 (Xz + X5 sing; — )(4)]2 + [(Xl + X5 COSP, — X3)2 + (Xz + X5 sing; — )(4)2 +X§ = X72]2 -

- [2X6 (¥, + x5 cosp, - Xs)]z <0



NUMERICAL EXAMPLE

A design problem is solved here to demonstrate the application of this optimization method. It is
required to design a planar path generation mechanism to meet the input-output relations shown in
table 1.

¢, =10° ¢, =30° ¢, = 60°
Xp-desired — S [Cm] Vb -desired ~ 3 [cm/s] A5 - desired — =7 [Cm/Sz]

Table. 1. Desired input-output relations

The problem is solved using nonlinear inequality constraints by the fmincon function and obtained the
solution

X = [14.335,13.339,51.62],1.008,0.632,41.645,66.245,54.609,44.963,5.654,—0.022]T

The linkage parameters of planar six-bar linkages are defined as:
Xo1 =14.335cm]; yo, =13.339cm]; X, =51.621cm]; yo, =1.008cm]; I, =0.632[cn;
|, = 41.645cm|; I, = 66.245[cm]; I, =54.609[cm|; I, = 44.963cm]|; e =5.654[cm;
a = -0.022rad)].
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Fig. 2. Optimization plot function by M atlab/Optimization tool

CONCLUSIONS

In this paper one of the basic problems in linkage kinematics, input-output analysis, is presented. The
aim of this paper is to establish the basic context of function-generating linkage synthesis problems.
The basic concepts for path generation are discussed to support the formulations presented in this
work. The optimization scheme presented above is very efficient in solving the problems of synthesis
of linkages under mobility constraints. This scheme is demonstrated by minimizing the design error.
The optimization procedure isillustrated with a numerical example. Optimal synthesis of linkageis, in
fact, a repeated analysis for a random determined mechanism and finding of the best possible one so
that it could meet technological requirements, and it is most often used in dimensional synthesis,
which implies determination of elements of the given mechanism (lengths, angles, coordinates)



necessary for creation of the linkage in the direction of desired motion. With same specific
modifications, this optimization model can be extended to other mechanical systems.
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Fig. 3. The optimum coupler-point curves of linkage
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