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Abstract: Mechanical behavior of beams under large rotations and displacements was investigated.
Using co-rotational approach given by Crisfield, three dimensional beam finite el ements was model ed
in Mathematica™ environment. The vyielding non-linear equation system was solved by utilizing
Newton-Raphson technique. Dynamic balance egquations and numerical time integration method were
introduced, the solution process was left as a future work, however.
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INTRODUCTION

Large rotations and displacements must be takenaiotount in the three dimensional beam models
used for the engineering applications, such as tanmtpmechanisms, robot arms, coil springs and
space frames. Here, the non-vectorial nature o#tiootal variables complicates the nonlinear
formulations [1]. A number of authors have introddcso-called co-rotational elements where the
displacements coming from rotations and deformatiare decomposed. In this formulation, each
discerete element carries a Cartesian coordinateraythat continuously rotates and translates with
the element but does not deform with the elementraZational formulation of this kind for modelling
beam elements appear to have been first proposadthgrs Oran and Kassimali [2] and Belytschko,
et al [3]. Oran and Kassimali solved the dynamics pnobté two dimensional beams by using co-
rotational formulation which was called as ‘beantdom’ approach. They derived a consistent
tangent stiffness matrix of beam element for srdafbrmations but did not take into account large
rotations. The nonlinear analysis of three dimemaidoeams using the co-rotational formulation
where the corresponding tangent stiffness matideewed for small deformations but large rotations
was presented by some researchers [3-5]. Pai eswpltlye co-rotational formulation for large
deformations and rotations for three dimensionaanie [6]. Research works including other
formulations for three dimensional beams can badda the literature [7-9].

EQUATIONS

Each node of the element has six degrees of freetthatn consist of three rotations and three
displacements (see Figure 1). Note that the sydisttirepresents local variables. Here, the element
behavior is linear in local coordinates however limaar behavior emerges from the co-rotational
formulation for large rotations.

Local degrees of freedom for the element are;

l:'}:T = (d}ni- E:Ti,df:,ﬂf:} 1)
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The unit vectoe; passes between first node and second node armkdannd as;

e; = (x +dyy)/l; 3
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Figure 1. Beam element and degrees of freedom.
A linear relationship can be written between logatal forces ) and rotations ) using Euler-
Bernoulli beam assumptions.

q: = K;p, (4)
Axial forces and moments depend on the local straimd rotations as;
N=Zu, M=D(0,-0,) (5)
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The subscript zero denotes the initial configutatemdD is the stiffness matrix for the moment-
rotation relation. Consider the relation betweeraland global degrees of freedomdgs = FT ép

and with the help of the virtual work principle gl internal force vector will be as follows;
q, =F'q,=F Kp,. (6)
Then the tangent stiffness matrix can be written as

ﬁq; = FT Jq TJFT q; = FT HLFJP 'Krcdp * (7)
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Local base vectors defined on an element can beisdég.2. Here, the rotation matricEsU andT
are composed of corresponding base vectors alignealumns.

t, T, E, U: Rotation Matrices

Figure 2: Current base vectors and rotation matrice
The relation between the global internal force @eand displacements can be written as;
0gi=K;dp (8)

Here,K, denotes for the tangent stiffness matrix. Caleutadf K, is so cumbersome that the detailed
procedure how to obtali, and the rotation matrices can be found in [4].



The tangent stiffness matrix for this formulatiannot symmetric, but numerical experiments have
shown that it becomes symmetric as the iterativacquure reaches equilibrium. Here, Newton-
Raphson method is utilized for the iterative pragzedo solve the nonlinear equation system. Below
the algorithm for the solution process is summatize

Steps:

. At the first step; form the elements and caleuthe initial rotation matrice§ ( E, U).

. Form the external force vectay).

. Calculate the rotation matrices for the curteat step.

. Form the element tangent stiffness matriggs (

. Assemble the global tangent stiffness matfiy.(

. Apply the boundary conditions.

. Inverse th&..

. Calculate displacement increment (Eq. 8).

. Update the nodal coordinates.

10. Check for the convergence,; if test is satisfiedtinue, if test is not satistied go to step 3.

11. Obtain the displacement data.
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Dynamic behavior of the beam can be analyzed byguany time integration method. In general,
equation of balance for the system at the endtiofe@ step will be

|:{:-l-:..*':-‘l —q, ~:-1.}*M&~:-1 *Cdr:-‘l =0. 9)
In this equation, subscripisand e denotes internal and external vectors respectivdlyis mass

matrix, C is damping matrix and is displacement vector. Making use of Newmf@rkme integration
method, displacement and velocity vectors for gl step will be as follows;

d.,=d, +Atd, + At ((1—28)d, +2Bd _.,)/2 (20)
:i,,__1 =d_+At((1—y)d, +yd ., (11)
The above equations are substituted into the gedgreamic balance equation and employing the
tangent stiffness matrix;

q. n q.:‘l"‘--'l K ‘ld Ml:

—d)+ctad—d)=0 (12

Hence, at each time step these nonlinear equaiurmsolved by using Newton -Raphson method.
However, the dynamic problems are left as a futupek and will not be covered in this study and
only solutions for static problems will be giverde.

Figure 3: Cantilever subject to end moment. Appliednoment values are 0.025K 0.3M", 0.5M', M", 2M"
(from right to left). #*=—

NUMERICAL EXAMPLES

Exampe 1: Cantilever subject to an end moment

A straight cantilever beam is subject to a bendiagnent at the right end (see Fig.3). This is abtual
a two dimensional pure bending problem, but is eblusing the current formulation to varify the
results. Here, 5 elements are modeled and allisnlptocess is accomplished Mathematica™ [10]
environment. A convergence criterion for NewtorpRson method is chosen as

<. 1/1000 and only 4 iterations are found to be enough el ¢éiane step. Heray is for the
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out of balanced forces and s for the total external forces.



Example 2: Forty five degree bend

A cantilever arc is loaded by a single end forcpliad perpendicular to the arc plane (see Fig. 4).
Elasticity modulus is taken as18nd the arc is modelled by 8 elements. Maximurd kue is 600
and it is divided into 8 equal load steps and Eattens for each step are required to converge. The
results are shown in Fig.5.

Figure 5: Deformed shapes of 45end.

Example 3: Clamped one-turn coil spring

One end (down) clamped and the other end is pulpeeard, helical spring has been studied by using
20 elements for linear and nonlinear behavior (Sigeb). Inhere, Young's modulus is “Lthelical
radius R=10, spring radius r = 1, helical sloped&@rees and force is 100 in nondimensional units.
The displacements of the end of the spring:

Linear solution: = -0.821422, = 0.37414,  3.12548

Nonlinear solution: -0.921413, 4+0.35634, W2.97771

In nonlinear solution process, the force is appléddone step and converge is achieved after 7
iterations. The deformed configuration is showirigure 6.

CONCLUSIONS
Mechanical behavior of beams under large rotatamd displacements was investigated. Using co-

rotational approach given by Crisfield, three disienal beam finite elements was modeled in
Mathematica™ environment. The yielding non-linear equation eystwas solved by utilizing



Newton-Raphson technigue. The solutions obtainam Examples are compared to be consistent with
those of Crisfield's. There are some situations rehe structure is subjected to small deformation
changes, but large rotations (i.e., springs). Tdren@ilation derived here might be useful for such

cases. Dynamic balance equations and numerical imsgration method were introduced, the

solution process was left as a future work, however
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Figure 6: Deformed shape of one turn coil spring
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