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Abstract: Shock absorbers are fundamental part of the vehicle suspension. Suspensions are needed to 
guarantee vehicle handling and passenger comfort [15-18,20,21,25,26]. For good handling and 
braking performance of the vehicle, the tire-road contact forces need to be as stable as possible. Each 
wheel should always remain in contact with the ground [21]. Comfort means that vibrations, induced 
by road profile during riding, are of a minimal nuisance to the passengers. When designing a new 
vehicle, a lot of development effort is focused on the optimal choice of the suspension parameters, 
stiffness and damping. 
This paper presents some results of an experimental study conducted on three shock absorbers that 
are in current production at Magneti-Marelli. Experimental tests were performed in conditions of 
random excitation. Based on the characteristic diagrams that correlate Forces with the kinematic 
values (Displacement, Velocity, Acceleration), by means of the "black box" method a mathematical 
model of the shock absorber response has been identified. 
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INTRODUCTION 

Automotive shock absorbers are part of the vehicle suspension. Suspension are needed to guarantee 
vehicle handling and passenger comfort [15-18, 20, 21, 25, 26]. For a good handling and braking 
performance, the tire-road contact forces need to be as stable as possible. Each wheel should always 
remain in contact with the ground [21]. Comfort means that vibrations, induced by road profiles 
during riding, are of a minimal nuisance to the passengers.  

 
When designing a new vehicle, a lot of development effort is focused on the optimal choice of the 
suspension parameters, stiffness and damping. A first tuning can be achieved by implementing a full 
car model and simulating typical road profiles [15-18, 20, 21, 25, 26]. The response from the 
simulations can give an idea about the quality of the suspension. However, the significance of the 
results strongly depends on the accuracy of the model. 
 
The shock absorber is one of the most complex parts to model of the vehicle suspension [1, 13, 14, 19, 
22, 24, 27]. In general the shock absorber behaves in a non-linear and time-variant way. Dampers are 
typically characterized by a simpler force-velocity diagram, also referred to as the damper 
characteristic diagram. Some information can also be extracted by plotting forces as a function of 
displacements resulting in a diagram, that in the automotive industry world is known as work diagram 
or resistance curve or control diagram [13]. 
 
The dependency of the shock absorber characteristics on time is due to the progressive rise of the oil 
temperature during the vehicle operation , which, in turn, is due to the conversion (dissipation) of 
kinetic energy into heat by viscous losses. Oil viscosity is a determining factor of the shock absorber 
characteristics and is strongly influenced by the temperature.  
 
This paper presents results of experimental study of three shock absorbers that are in current 
production at  Magneti-Marelli. The experimental tests were performed in conditions of random 



excitation. Based on the characteristic diagrams that correlates Forces with the kinematic values 
(Displacement, Velocity, Acceleration) and by means of the "black box" method a mathematical 
model of the shock absorber response has been identified. The procedure and the obtained results will 
be discussed in detail in following text. 
 
EXPERIMENT 
 
Measurements were conducted in Magneti Marelli plant with the MTS testing machine, that is able to 
provide random excitation signals. During the tests the force and displacement values are acquired 
from the MTS machine transducers and stored inside a PC; moreover also the acceleration of the rod 
and of the absorber body are measured with two acceleration sensors Bruel&Kjajer. Relative 
acceleration is calculated as their difference. 
  
Relative velocity can be calculated in two ways. Both of these ways are based on the substitution of 
the differential with the finite difference ratio. The first way consists in the differentiation of the 
relative displacement in respect to time, the second way consists in the integration of the measured 
relative acceleration with respect of time.  
In both cases it is clear that an estimation of the true value of the velocity is obtained. As the random 
excitation is characterised by a spectrum that has the highest frequency component of the same order 
of magnitude of the sampling rate, the integration procedure and the derivation one lead to values of 
the velocity that are close each to the other but not identical.  
 

 
 

Figure 1. The relation between two procedures of velocity calculation 

 
Figure 1 shows a diagram to illustrate the relation between the velocity calculated by derivation of 
displacements and the velocity calculated by integration of the measured relative accelerations. From 
Figure 1 it is clear that there is a good correlation between two procedures, but none leads to the 
correct evaluation of the velocity. 
 
Relative acceleration can be calculated both from two accelerations registered during the experimental 
tests (piston and body) and by means of velocity derivation in respect to time. The relation between 
them is shown in figure 2. 
 
From Figure 2 it is clear that there is a good correlation between the two procedures. After some 
analyses and discussion, bearing in mind that, due to the previously discussed limitations, none of the 
procedures can lead to the true values of the kinematic quantities but it is highly desirable to unify the 



methods for calculation of the velocities and accelerations, we decided to calculate relative 
acceleration by velocity derivation in respect to time.  

 
 

Figure 2. The relation between two calculation procedures for relative acceleration 

 
Three types of shock absorbers of Magneti Marelli current production were tested in this experiment 
(we will refer to them as A, B and C), and they were without rubber joints. 
 
For the shock absorber excitation, random signals with 5 and 10 mm RMS were used. The excitation 
frequencies were mainly in interval from 0.1 to 20 Hz. 
 
During experiment we used sampling time step of 0.00195 s, sample size results to be of 30722 points, 
that ensures the suitability of the acquired results in the interval 1.6929 Exp(-4) to 250 Hz (the Nyquist 
frequency), that is acceptable when we have in mind the aim of this study [2-4]. 
 
For illustration, Figures 3 and 4  show respectively the history of displacement and force in time, for 
shock absorber “A” and excitation magnitude of 5 mm RMS.  

 
Figure 3. Displacement time history  

 



The frequency content of the displacement history (see Figure 3) is given in Figure 5 for example. We 
can see that the excitations are mainly in the interval 0.1 to 20 Hz with random amplitudes.  
 

 
Figure 4. Force time history 

 

 
 

Figure 5. The spectrum of displacements for shock absorber “A” and 5 mm RMS magnitude of excitations  
 
For illustration in figures 6 to 8 the forces as functions of displacement, velocity and acceleration, for 
shock absorber “A” and excitation with RMS 5 mm, are given. 
 



 
Figure 6. Force as function of displacements 

 
Figure 7. Force as function of velocity 

 
Figure 8. Force as function of acceleration 



SHOCK ABSORBER MODELING 

In our research, we knew only the functional dependence of the forces in respect to displacements, 
velocities and accelerations. Analysis of the diagrams force-displacement,  force-velocity, and force-
acceleration have shown that displacement, velocitiy and acceleration affect the force in shock 
absorber, and that should be in mind during its modeling. 
 
Because we will not enter into the interior of shock absorbers, the task is defined as "black box" 
problem [6]. Namely, we knew the inputs (displacements, velocities and accelerations) and output 
variable (forces restituted by the shock absorbers). The goal is to define the best mathematical model 
of the shock absorber. The problem was divided into two parts:  
 
1. defining the structure of the model (influential parameters: displacement, velocity, acceleration) and  
2. identify the parameters of the model.  
 
The first task is solved by using a number of possible models given by expressions (1-11). 
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where: 
 
x[i], i=1,9 - parameters of model that should be identified, 
d,v,a – relative displacement, velocity and acceleration, respectively, and 

ad σσ ,  - variance of displacement and acceleration, respectively. 

 
The second task is solved by using the optimisation method, which will be the described  below. 
 
As it is well known, the method of ‘stochastic parametric optimisation’ is based on the methods of 
non-linear programming. In the optimisation process, where constraints for design parameters are 
present, the problem is solved by the introduction of ‘external’ or ‘internal’ penalty functions. In the 
specific case, for the identification of the parameters of the shock absorber, a method of ‘stochastic 
parametric optimisation’ was applied [5-7,10-12], based on the Hooke Jeeves method and “external “ 
penalty functions [5]. The block scheme of the procedure is given in Fig. 9 [6-7, 10-12]. Since this 
optimisation method has been described in details in [5-7, 10-12], its description will not be repeated 
here. The optimisation method was programmed in Pascal language. 
 



During the identification of unknown parameters of proposed models, we had set goal that the models 
should be acceptable for both levels of excitation functions. As in the experiments we had two levels 
of excitation, the objective function is defined by expression: 
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where: 
 
♦ 21,αα  are weight coefficients that describe the influence rank of the corresponding excitation on 

the objective function . In this case we used 21,αα =1. 

♦ 2exp1expmod ,, ererel FFF  are the values of the forces given by model (1-12), and forces given by 

experimental measurements with excitation level 5 or 10 mm RMS, respectively, 
♦ N – is the sample size (30722 points). 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 - Block diagram of the developed procedure for calculation of the model parameters 
 
Since there are parameter constraints in practice, the optimisation was carried out by means of the 
introduction of defined domain of parameters:  

 
*5100][,5000][ maxmin =−= sxsx  

 
(* the measure unit depends on the parameters). 
 
As stated in [5-7,10-12], a global (absolute) minimum of the objective function is defined in such a 
manner that optimal parameters lead to minimum value of the objective function. Unfortunately, there 
are no generally accepted procedures for definition of the global minimum of the objective function. 
Thus, procedures based on optimisation with different initial values of the parameters to be optimised 
are used in practice.  In practice, the global minimum is searched by beginning the optimisation 
process with several different initial values of parameters to be optimised [6,7,10-12]. In this case, the 
optimisation process has begun with three different initial values of those parameters. Preliminary 



analysis showed that only the initial values of model parameters chosen in the central part of the 
considered interval allow for unimpeded iterative process, and we used only these initial values. 

 
The identification  was performed on a Pentium-4 computer (Intel 1.8 GHz, 1 Gb RAM), and the 
iteration process was interrupted when the difference between two adjacent values of the objective 
function reached 1e-09. Duration time of the identification per combination was approximately less 
than one hour. Minimum of objective functions for all the models are given in Table 1.   
 
DISCUSSION 

 
Analysis of data from Table 1 shows that the structure of the model (1-12) affects the minimum value 
of the objective function. This is understandable, because we define the problem as a "black box" 
where we adopted that the better model is characterised by the smaller value of the objective function. 
Models (6) and (12) have values of the objective function lower than the other models.  
 

 

    Table 1.  Minimal values of the objective functions of the models 
 

Model No Shock absorber Minimal value of the objective function 
1 A 4.933639923395167E+004 
1 B 2.731528581895664E+004 
1 C 1.469308043138020E+004 
2 A 3.076775807535464E+004 
2 B 1.802670955044523E+004 
2 C 7.656719916029218E+003 
3 A 2.396113131415655E+004 
3 B 1.500545381768893E+004 
3 C 5.382619164907592E+003 
4 A 2.394590457506216E+004 
4 B 1.486550659439362E+004 
4 C 5.319625071550819E+003 
5 A 2.397139551180624E+004 
5 B 1.487545181083031E+004 
5 C 5.322489965605322E+003 
6 A 2.395713215491265E+004 
6 B 2.989236747878551E+004 
6 C 1.822128042424834E+004 
7 A 6.663209154654681E+004 
7 B 2.653453878109062E+005 
7 C 1.775635220529670E+004 
8 A 6.891364717297212E+004 
8 B 2.985659561455255E+004 
8 C 1.807358450240563E+004 
9 A 2.392263130953798E+004 
9 B 1.504333619890715E+004 
9 C 5.367231209991907E+003 
10 A 2.390640716472426E+004 
10 B 1.495530969977917E+004 
10 C 5.385663672521046E+003 
11 A 1.581119622794756E+004 
11 B 1.737267729270784E+004 
11 C 8.656824628392669E+003 



12 A 2.392476531437416E+004 
12 B 1.471878970195807E+004 
12 C 5.252016484044151E+003 

 
 
We will discuss these results in following sections. 
 
From Table 1 it is clear that design of the shock absorbers (A, B, C) affects the parameters of the 
model, and we should analyse the objective function for all the shock absorbers. Bearing that in mind, 
we consider that the minimal averaged value for the shock absorbers (A, B, C) has model No (12) and 
we concluded that this model is the most acceptable for the analysis. Based on this choice, the 
parameters for accepted model (No 12) are shown in Table 2. 

Table 2. The identified parameters of the model 
 

Model 
No 

Shock 
Absorber 

Minimal value of objective 
function 

Identified parameters of the model 

12 A 2.392476531437416E+004 -2.002903394046352E+002 
 9.511512333050106E+000 
-8.845943376824775E-003 
-2.327815204673694E-002 
 3.028817185624795E+000 
-7.597706204283637E-002 
 2.323432897457028E-001 
 7.847125998270326E-004 

12 B 1.471878970195807E+004 -1.080773380138234E+002 
 1.963536464604005E+000 
-2.527412394532334E-003 
-3.879692017049664E-003 
 7.309897516504849E+000 
-4.020452866363680E-001 
 3.319189853583900E-001 
 2.017178682023871E-002 

12 C 5.252016484044151E+003 -1.939064710283242E+002 
 3.377991211657644E+000 
-4.422971689244961E-003 
-7.759384022987308E-003 
 1.207000621811347E-001 
-5.698279654720194E-003 
 9.364857087367026E+000 
 4.703949717392524E-001 

 
For analysis purpose, some signals have been processed with softwares “Analsigdem” and 
“Demparcoh” [8,9]. 

 
For illustration, in figures 10-19 some results for shock absorber (A) are shown. 

 
From the analysis of all data, which are partially shown in the figures 10-12 and 15-17, we can 
conclude that there is good coincidence between results obtained by experiment and model. 
 
It should be noted that for very negative values of forces for excitation RMS 10mm, for all shock 
absorbers, large differences occur in the function of speed. That can be explained by the influence of 
non-linearity of the system.  
 



Finally, we analysed coherence functions that are partially shown in Figure 14 and 19. Analysis 
showed that there is acceptable value of the aforementioned functions, so that the model (12) can be 
suitably used in vehicle dynamic simulations. 

 
 

 
Figure 10. Comparison of  forces measured in experimental tests and computed with the identified model 

in respect to displacement for excitation RMS 5 mm 
 
 

 
Figure 11. Comparison of  forces measured in experimental tests and computed with the identified model 

in respect to velocity for  excitation RMS 5 mm 



 

 
Figure 12. Comparison of  forces measured in experimental tests and computed with the identified model 

in respect to acceleration for excitation RMS 5 mm 

 
 

 
Figure 13. Comparison of  forces measured in experimental tests and computed with the identified model 

for excitation RMS 5 mm 
 
 



 
Figure 14. Coherence function between the forces measured in experimental tests and computed with 

the identified model for excitation RMS 5 mm 
 
 

 
 

Figure 15. Comparison of  forces measured in experimental tests and computed with the identified model 
in respect to displacement for excitation RMS 10 mm 



 
 

Figure 16. Comparison of  forces measured in experimental tests and computed with the identified model 
in respect to velocity for excitation RMS 10 mm 

 
 

 
Figure 17. Comparison of  forces measured in experimental tests and computed with the identified model 

in respect to acceleration for excitation RMS 10 mm 



 
Figure 18. Comparison of  forces measured in experimental tests and computed with the identified model 

for excitation RMS 10 mm 

 
Figure 19. Coherence function between the forces measured in experimental tests and computed with 

the identified model for excitation RMS 10 mm 
 

 
CONCLUSION 
 
Bearing in mind previous analyses, we can conclude that the method “black box” and optimisation 
methods for identifying of parameters of the shock absorber model are acceptable. In this study the 
model described as (12) is acceptable for vehicles dynamic simulation. 
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