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Abstract. The paper presents a general method for the optimum synthesis of Cebâsev type plane 
quadrilateral mechanisms, methods based on position functions and numerical calculus method. By 
the suggested method we make optimum synthesis to generate a trajectory of a point on the position 
rod’ plane which approximates a straight line or a circle arch, obtaining different mechanisms. 
Numerical applications of the method based on calculus algorithms and programmes are rendered in 
paper [5].
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INTRODUCTION    

Cebâsev mechanisms are articulate quadrilateral plane mechanisms, built that a certain point of the 
piston rod make approximately lither a circle arch or a straight line segment 
These mechanisms are, generally speaking of the type – crank swing support and is characterized by 
the fact the lengths of the piston rod, of the swing support and of the distance between generating 
point on the joint piston rod – swing support are equal. For the synthesis of such mechanisms we 
appeal [4] to Cebâsev analytical method and through analytic laborious calculus we fond Artobolevski 
mechanisms presented by this one in the 1st volume of the paper [1]. 
In the paper we elaborate a general method for the synthesis of Cebâsev – type mechanisms, method 
based on the position function and methods of numerical calculus. 

GENERAL EQUATIONS 

We consider Cebâsev quadrilateral mechanisms in fig.1 related to a system of axes OXY and we use 
notations: 

A = a; OC = d; AB = BC = BM = b                                                   (1) 

where: ϕ - angle between crank OA and axis OX ; θ – angle between piston rod AB and swing support 
BC;  γ – angle between straight lines CA, CO;   β - angle between segments BM and piston rod AB.

In the position ϕ = 0 (fig. 2) the CM0 slants with an angle 
22

βπ −  towards the axis OX and the angles 

∠ACO, ∠MCM0 (fig.1) are equal and have the same measure γ.  

Under these circumstances, the position of point M
related to a system of axes Cxy (fig.1) where the 
axis Cy coincides with straight line CM0 slanting 

with an angle 
22

βπ −  toward the axis OX.

As the triangles ABC, CBM are isosceles and 
noting ρ  the polar distance CM, it results the 
equalities: 
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2
cos2

βθρ += b                                             (4) 

Applying the theorem of the cosine in the triangle ACO we infer the equality: 

ϕcos222 addaAC −+= ;                                                              (5) 

and taking into account the relation (3) we infer the expression: 
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from which it comes out: 
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from the sine theorem in the triangle OAC  

ϕγ sinsin
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we infer with the help of relation (5) the equality: 
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Based on the relations (4) (7), (9) we infer the parametric equations of the point M’ trajectory versus 
the system of axes Cxy, the parameter being the angle ϕ
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PROPERTIES OF THE POINT’S TRAJECTORY ON THE PISTON ROD 

The equations (10) show that the trajectory described by the point M is a closed curve and symmetric 
versus the axis Cy
This characteristic comes out of the fact that if we replace in these equations, the angle ϕ with  −ϕ  
then taking into account the relations (6), (9) it infers the angle θ doesn’t modify and the angle γ
becomes  − γ  and consequently the coordinate x becomes  –x  and the coordinate y stays invariable. 
The relations (7), (9) being adimensional we can look for Cebâsev mechanisms discharging the 
condition b=1 
For all the mechanisms similar to these, the resemblance report being equal to b, the trajectories 
described by point M will be the same 
Under these circumstances if we add the notation 

ad λ=       (11) 

we obtain from (6), (9), (10) the following synthesis relations 
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Relation (12) shows that the angle θ takes extreme values for ϕ = 0, π and particularly: 
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If we consider the mechanism to be of crank – swift support type then the element OA must be the 
smallest, by thus implying inequalities: 

10;1 <<< aλ                          (17) 
Moreover it is necessary for angle θmax to exist, fact that leads to the condition: 

2)1( <+λa                               (18) 
Cebâsev Mechanism double crank is obtained if the element OC is the smallest and further on the 
angle θ exists, that is when: 

2)1( ;10 <+<< λλ a                         (19) 

In the following paragraphs we will be studying only crank-swing support mechanisms that is, those 
mechanisms fulfilling the conditions (17), (18). 
For these mechanisms, out of the relations (4), (15), (16) comes out that extremes values of the polar 
radius ρ  take place in case: 
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The extremes of the angle γ are obtained for the 
values of the angle ϕ for witch we cancel the 
differentials of the expression (13) that is for the 
value of the ϕ inferred of the equation: 

0cos)1(cos 22 =−++− λϕλϕλ           (22) 

for the case mentioned (λ > 1) we get the values 
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and of the relation (13) if we use notation: 
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it comes out: 
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0max0min  ; γγγγ =−=                      (25) 

Based on the established facts, it comes out the point M trajectory is a closed and symmetrical curve 
(fig.3) limited by the circles with the centre in C of radii ρ0, ρπ as well polar radii: 

00  ; γγγγ −==                     (26) 

If we appeal to polar coordinates then the polar radius CM=ρ  and the angle γ are given by the 
relation: 
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in case:

minmax 22
θβπθ >−>                          (29) 

the curve described by point M goes through point C and in case angle b is negative and carries out the 
inequality: 

2
maxmin θθβ +

−<                        (30) 

we obtain the condition: 

πρρ <0                                  (31) 

OPTIMAL SYNTHESIS TO GENERATE A TRAJECTORY THAT APPROXIMATES A 
STRAIGHT LINE SEGMENT 

The description of the curve is made in the sense indicated in fig. 3, precisely: where point M starts 
from M0 for ϕ = 0 and moves toward M1 where it moving toward M2 , and it gets there when  πϕ = ; it 

moves then toward M3 where he reaches when 
λ

πϕ 1
arccos2 −=  and finally move moves toward M0

where it reaches when πϕ 2= . 
We propose ourselves to determine Cebâsev mechanism so that a portion of the curve’ arch  M1M2 be 
approximated in a propitious way  a straight line segment parallel to the axe Cx      (fig. 1). 

Taking into account the angle ϕ for the point M1 equals 
2

1
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<  it comes out we can choose 

values with the interval [90°;180°] for the angle ϕ. 
For the parameterλ, a chosen to comply with the inequalities (17) , (18) and for a chosen value β, we 
determine according to a value ϕi of expressed in sexagesimal degrees, in order, the angles θi, γi with 
the relations (12), (13) and the value yi, with the second relation (14). 

Taking into account the index correspondence io
i += 89ϕ  we determine the average value y  with 

the relations: 
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Then we calculate the following parameters 90θ , 90γ 90x  which correspond to the angle ϕ = 90° with 
the relations: 
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and is defined the function objective  by the relation: 
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The constant values λ, a, β are determined from the condition that the function objective be minimum. 

THE OPTIMUM SYNTHESIS GENERATING A TRAJECTORY THAT APPROXIMATES A 
CIRCLE  ARCH. 

If the synthesis is made with the purpose of getting a mechanism for which point M describes a 
trajectory that approximates a circle arch (fig.4) then we consider an interval of variation of the angle 

ϕ ∈ [0, ϕ~ ] and the radius R of the arch infers from the equality M
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where the parameters y~ ,~ρ , are being calculated with 

relations (4), (12) - (14), the angle ϕ being equal to ϕ~ . 
Further on, we calculate the values xi, yi with the help of 
relations (10) where the angle ϕ takes the values in 
degrees i – 1, i taking on his turn, values from 1 to 

]~[ϕ=N .  
The optimum mechanism is obtained through minimizing 
the function objective: 
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To generate circle arches on the interval ϕ ∈ [90°, 270°] we determine the radius of the curvature for a 
value ϕ~  > 90° in the relation (35) by replacing 0ρ  with πρ  and xi, yi is calculated for values using 

degrees proportionally of the angle/ within the interval [ϕ~ , 180°].  
The algorithm and calculus programme and numerical results are displayed in the paper no [5]. 

CONCLUSIONS 

The method used in the paper allows easily obtaining Cebâsev type mechanisms. Based on the 
established calculus algorithm, we create a calculus programme by which we can obtain numerical 
results, fact that is being made in paper [5]. 
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By the established method we carry out the optimum synthesis of the plane quadrilateral mechanisms 
for which the trajectory of a point on the piston rod’s plane approximates a straight line segment or a 
circle’ arch. 
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